Antitumor Agents. 3.¹ Synthesis and Biological Activity of 4β -Alkyl Derivatives Containing Hydroxy, Amino, and Amido Groups of 4'-O-Demethyl-4-desoxypodophyllotoxin as Antitumor Agents

Tadafumi Terada,^{*} Katsuhiko Fujimoto, Makoto Nomura, Jun-ichi Yamashita, Konstanty Wierzba, Ryoko Yamazaki, Jiro Shibata, Yoshikazu Sugimoto, and Yuji Yamada

Hanno Research Center, Taiho Pharmaceutical Co. Ltd., 216-1 Nakayashita Yaoroshi, Hanno-shi, Saitama 357, Japan

Takashi Kobunai, Setsuo Takeda, Yoshinori Minami, and Ken-ichirou Yoshida

Tokushima Institute, Taiho Pharmaceutical Co., Ltd., Hiraishi, Ebisuno, Kawauchi-cho, Tokushima-shi, Tokushima 771-01, Japan

Hideo Yamaguchi

Osaka University of Pharmaceutical Sciences, Kawai 2-10-65, Matsubara, Osaka 580, Japan

Received October 16, 1992

A series of 4β -alkyl (7–10), 4β -aminoalkyl (12a-y), and 4β -amidoalkyl derivatives (14a-g) of 4'-O-demethyl-4-desoxypodophyllotoxin have been synthesized, and their cytotoxicity, inhibition of DNA topoisomerase II (Topo II), and tubulin polymerization were evaluated. All derivatives of 12a-y and 14a-g did not inhibit tubulin polymerization. Many compounds exhibited cytotoxicity and inhibition of Topo II. In particular, 12o, 12s, 12t, and 12u strongly inhibited Topo II (IC₅₀ (μ M) 32.5, 60.9, 58.8, and 33.6, respectively) and were strong cytotoxicity against P388 cells (IC₅₀ (M) 1.0, 4.1, 3.3, and 3.0 × 10⁻⁹, respectively), compared with VP-16 (IC₅₀ (μ M) 59.2, IC₅₀ (M) 1 × 10⁻⁸, respectively). These compounds were nearly equal to or superior to VP-16 in antitumor activity in vivo (L1210, P388, and Lewis lung) and were more cytotoxic against various human cell lines in vitro than VP-16.

Many derivatives of podophyllotoxin (POD) that are potent inhibitors of mitosis² have been synthesized and examined as antitumor agents.³ Among these, podophyllinic acid ethyl hydrazide (SP-1) and podophyllotoxin benzylidene- β -D-glucopyranoside (SP-G), whose main mechanism of action is inhibition of microtubule polymerization,⁴ have been examined as clinical antitumor agents (Chart I). However, these agents have been little used as clinical antitumor agents because of severe side effects.⁵ In contrast, the analogous 4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene)-β-D-glucopyranoside (etoposide; VP-16) and 4'-demethylepipodophyllotoxin 4-(4,6-O-thienylidene)-β-D-glucopyranoside (teniposide; VM-26) (Chart I) are widely used in clinical cancer chemotherapy.⁶ VP-16 does not inhibit tubulin polymerization and induces dose-dependent DNA strand breakage which is associated with its ability to inhibit DNA topoisomerase II (Topo II).⁷ Therefore, much attention has been given to the modification of podophyllotoxin glucoside as a potent Topo II inhibitor.⁸ Recently, we reported that some nonglucoside podophyllotoxin derivatives with an aminoalkoxy residue instead of glucose at the 4β -position of 4-desoxypodophyllotoxin, inhibited Topo II without inhibiting microtubulin polymerization, in a manner similar to that of VP-16, and showed antitumor activity in vitro and in vivo.9

Though VP-16 has shown high response rates (40-60%) against small cell lung cancer (SCLC),¹⁰ those against nonsmall cell lung cancer (NSCLC) have been very low (8%).¹¹ NSCLC has the following biological and biochemical characters which differ from SCLC: (1) a 2-3-fold longer doubling time;¹² (2) a lower labeling index;¹² and (3) a lower amount and activity of Topo II.¹³ The low

Chart I

sensitivity of VP-16 to NSCLC could be due to insufficient inhibition of Topo II and/or poor distribution in the lung tissue.¹⁴

A compound of POD that overcame the following factors should be a more effective agent against NSCLC: (1) more potent inhibition of Topo II and (2) a higher concentration and longer distribution of the active form of the compound

© 1993 American Chemical Society

Scheme I*

^a (1) CH₂=CHCH₂SiMe₃, BF₃·Et₂O/CH₂Cl₂-20 to 0 °C; (2) (i) cat. OsO₄-NMO/CH₃COCH₃, room temperature; (ii) Pb(OAc)₄/ benzene; (3) CrO₃-H₂SO₄/H₂O-CH₃COCH₃, 0 °C; (4) 5% Pd-C, H₂ (1 atm)/CH₂Cl₂, room temperature; (5) (i) Zn(BH₄)₂/THF, 0 °C to room temperature; (ii) 5% Pd-C, H₂ (1 atm)/CH₂Cl₂, to room temperature; (6) (i) 2M BH₃·Me₂S/THF, 0 °C to room temperature; (ii) pyridinium chlorochromate/CH₂Cl₂, 0 °C to room temperature.

to the lung tissue. Therefore, we attempted to synthesize compounds which are more stable metabolically and have more potent inhibition of Topo II and more potent cytotoxicity against NSCLC than VP-16.

In this paper, we describe the synthesis of 4β -alkyl derivatives containing hydroxy, amino, and amido groups of 4'-demethyl-4-desoxypodophyllotoxin. We studied the relationships between structure and biological activities, especially cytotoxicity against human NSCLC and inhibitory activity against Topo II. In addition, we examined the in vivo antitumor activity of the selected compounds.

Chemistry

The synthesis of compounds 4–10 is shown in Scheme I. Regio- and stereospecific introduction of allyl group at the 4β -position of 4'-demethyl-4'-O-(benzyloxycarbonyl)epipodophyllotoxin (3) was obtained using trimethylallylsilane in the presence of boron trifluoride etherate, at a high yield according to the previously reported method.¹ Oxidation of 4 with osmic acid and N-methylmorpholine N-oxide (NMO) in acetone, followed by oxidation with lead tetraacetic acid $(Pb(OAc)_4)$ in benzene gave 4β -(formylmethyl)-4-desoxypodophyllotoxin (5). Jones oxidation of 5 gave 4β -(2-oxo-2-hydroxyethyl)-4-desoxypodophyllotoxin (6) in moderate yield (59.4%). Deprotection of the 4'-benzyloxycarbonyl group of 6 was carried out with H_2 (1 atm) on 5% palladium-carbon in dichloromethane to give 7. Reduction of the allyl group of 4 with a borane dimethyl sulfide complex in THF, followed by oxidation with pyridinium chlorochromate in dichloromethane gave 4β -(2-formylethyl)-4-desoxypodophyllotoxin (9). Reduction of the aldehyde group of 5 or 9 with zinc borohydride $(Zn(BH_4)_2)$ in THF, followed by deprotection of 4'-benzyloxycarbonyl group with H_2 (1 atm) on 5% palladium-carbon in dichloromethane, gave the 2-hydroxyethyl compound (8) or 3-hydroxypropyl

Table I. Physical Properties of the 4β -Alkyl-4desoxypodophyllotoxin Derivatives Shown in Scheme I

compd	yield, %	mp, °Cª	$[\alpha]^{20}$ D, deg (c., solvent ^b)	formulac
4	95.8	135-137	-70.03 (1,300)	C32H30O9
5	92.9	180-182	-71.04 (1.320)	C ₈₁ H ₂₈ O ₁₀
6	59.4	138-140	-68.59 (0.554)	$C_{31}H_{28}O_{11}$
7	66.3	222-225	-93.95 (0.430)	$C_{23}H_{22}O_{9}$
8	74.5	120-122	-78.72 (0.194)	C23H24O8
9	44.9	153–155	-69.09 (0.380)	C32H30O10
10	48.5	174-175	-81.30 (0.214)	$C_{24}H_{26}O_8$

^a All compounds were recrystallized from Et₂O. ^b All compounds were dissolved in DMSO. ^c Analyses for C and H were within $\pm 0.4\%$ of the calculated values.

Scheme II⁴

^a (1) HNR¹R², NaCNBH₃/AcOH-CH₃OH, 0 °C to room temperature; (2) (i) 10% Pd-C, H₂ (1 atm)/CH₂Cl₂; (ii) 4 N HCl-AcOEt/ AcOEt, 0 °C; (3) (CH₈)₃CCOCl, HNR¹R², DMAP/AcOEt, 0 °C (n, 2 or 3; m, 1 or 2).

compound (10), respectively. The physical properties of 4-10 are listed in Table I.

The syntheses of 4β -alkyl-4-desoxypodophyllotoxin derivatives containing various amino and amido groups are shown in Scheme II. Reductive amination of 5 or 9 with sodium cyanoborohydride (NaCNBH₃) and various appropriate amines in AcOH-CH₃OH gave the 4β -aminoalkyl derivatives 11, followed by deprotection of the 4'-benzyloxycarbonyl group with H_2 (1 atm) on 10% palladium-carbon in dichloromethane and by treatment with 4 N HCl/AcOEt, gave 4\beta-(aminoalkyl)-4-desoxypodophyllotoxin derivatives (12a-y). Physical properties of 12a-y are listed in Table II. The formation of mixed anhydrides with 6 and pivaloyl chloride in the presence of (dimethylamino)pyridine (DMAP), followed by reaction with various appropriate amines gave 4β -amidoalkyl derivatives 13. The use of DCC (dicyclohexylcarbodiimide) as a condensing agent with 6 and various appropriate amines was not successful. Deprotection of the 4'benzyloxycarbonyl group of 13 with H_2 (1 atm) on 10% palladium-carbon in dichloromethane, followed by treatment with 4 N HCl/AcOEt, gave 4β -(amidoalkyl)-4desoxypodophyllotoxin derivatives 14a-g. The physical properties of 14a-g are listed in Table III.

Biological Results and Discussion

Recently, we reported that cytotoxicity and Topo II inhibitory activity alone were not good indicators of antitumor activity in vivo for POD derivatives, insofar as their derivatives inhibit tubulin polymerization.⁹ Therefore, we examined the inhibition of tubulin polymerization and Topo II, as well as cytotoxicity. The biological effects

Table II. Physical Properties of 12 Shown in Scheme II

compd	R1	R ²	n	m	vield.ª %	mn. °C ^b	[a] ²⁰ n deg (c. solvent ^c)	formulad
19-	<u></u>				01.0	006 000	CC 77 (0 010)	
128	CH ₃	CH	2 9	1	81.8 61.5	220-228	-00.77 (0.910)	$C_{25}H_{29}NO_7 HCI H_2O$
120	CH3		3	1	01.0	240-243	-79.91 (0.510)	C ₂₈ H ₃₁ NO ₇ HCI·H ₂ O
120	CH3		2	Ţ	72.0	234-237	-60.89 (0.335)	$C_{28}H_{31}NO_{8}HCI-2H_{2}O$
120	CH ₃	$CH(CH_2OH)_2$	2	1	67.0	222-225	-69.31 (0.550)	C ₂₇ H ₃₈ NO ₉ ·HCI-0.5H ₂ O
120	CH ₃	CH ₂ CH ₂ OCH ₃	2	1	92.0	193-195	-71.72 (0.488)	C ₂₇ H ₃₈ NO ₈ ·HCl·H ₂ O
12f	CH3	$(CH_2)_5CH_3$	2	1	66.1	210-214	-65.65 (0.385)	C ₃₀ H ₃₉ NO ₇ ·HCl·H ₂ O
12g		ј ₂ он	2	1	59.3	23 9- 244	-58.38 (0.590)	C ₂₈ H ₃₃ NO ₈ ·HCl·0.5H ₂ O
12h	CH3	$\neg \bigcirc$	2	1	81.0	240-242	-66.77 (0.910)	C ₃₀ H ₃₇ NO ₇ ·HCl·H ₂ O
1 2i	\langle	\sum	2	1	61.0	250-252	-70.25 (0.550)	$\mathrm{C}_{28}\mathrm{H}_{33}\mathrm{NO}_{7}\text{\cdot}\mathrm{HCl}\text{\cdot}\mathrm{H}_{2}\mathrm{O}$
1 2i	CH.	CH ₀ Ph	2	1	69.8	204-205	-64.94 (0.610)	Ca1HaaNO7.HCl-2.5HaO
12k	,	\neg	2	ī	70.0	251-253	-63.38 (0.183)	CorHai NO. HCI HaO
	Ĺ	^	-	-	1010	201 200		02/113/1106 1101 1120
121	CH3	N(CH ₃) ₂	2	1	89.2	224-226	-71.42 (0.580)	C ₂₈ H ₃₂ N ₂ O ₇ ·HCl-0.5H ₂ O
12m	CH ₃	N(CH ₈)Ph	2	1	67.4	170-172	-87.93 (0.600)	C ₃₁ H ₃₄ N ₂ O ₇ ·HCl·H ₂ O
12n	Н	$(CH_{2})_{2}N(CH_{3})_{2}$	2	2	55.0	213 dec*	-64.09 (0.493)	C27H34N2O7·2HCl·2.5H2O
1 2 0	CH ₃	$(CH_2)_2N(CH_3)_2$	2	2	71.7	203-205	-67.44 (0.495)	CoaHaaNoO7-2HCl-HoO
12p	CH	(CH ₂) ₂ N(CH ₂) ₂	2	2	92.0	238 dec	-56.76 (0.303)	CoeHasNoOre2HCl-3HoO
12a	CH.	(CH ₂) _e N(CH ₂) ₂	2	2	75.0	198-199	-57.14 (0.119)	CooH44NoOre2HCl-1.5HoO
12r	CH	(CHa) N(CHaCHa)a	2	2	61.5	195-197	-59.73 (0.298)	CooH40NoO7:2HCl:2HoO
129	CH.		2	2	69.0	210-213	-63.89 (1 155)	CarHigNoOn 2HCh 2HoO
125	0113	(CH ₂) ₂ -N	-		00.0	210 210	00.00 (1,100)	0311140142072110121120
12t	\langle		2	2	65.4	280 dec	-48.95 (0.527)	C ₃₃ H ₄₂ N ₂ O ₇ ·2HCl·H ₂ O
1 2u	\langle)нсна	2	2	66.7	232-236	-59.35 (0.556)	$C_{28}H_{34}N_2O_7 \cdot 2HCl \cdot 2H_2O$
1 2v	CH3	(CH ₂) ₂ ·N_0	2	2	66.0	210–216	-57.07 (0.820)	$C_{30}H_{33}N_2O_8 \cdot 2HCl \cdot 2H_2O$
1 2 w	CH3		2	2	31.0	181–183	-64.56 (0.285)	C ₃₀ H ₃₂ N ₂ O ₇ ·2HCl·2H ₂ O
12 x	CH3		2	2	57.0	185-186	-58.21 (0.119)	C ₃₀ H ₃₂ N ₂ O ₇ ·2HCl·1.5H ₂ O
1 2Y	CH3	N NCH3	2	2	67.0	188-190	-64.58 (0.384)	C ₂₉ H ₃₇ N ₃ O ₇ ·2HCl·3H ₂ O

^a Yield from 5 or 9. ^b All compounds were recrystallized from Et_2O . ^c All compounds dissolved in DMSO, except for 12c, 12t (in H₂O), and 12m (in DMF). ^d Analyses for C, H, and N were within $\pm 0.4\%$ of the calculated values. ^e Dec: decomposed.

compd	R1	\mathbb{R}^2	yield,ª %	mp, °C ^b	$[\alpha]^{20}$ _D , deg (c, solvent ^c)	formula ^d
1 4a	н	(CH2)2.NO	84.3	250 dec ^e	-64.71 (0.479)	C ₂₈ H ₃₄ N ₂ O ₉ ·HCl·H ₂ O
1 4b	\subset		76.1	209 dec	-42.83 (0.831)	C ₃₃ H ₄₀ N ₂ O ₈ ·HCl·H ₂ O
1 4c	CH ₈	(CH ₂) ₂ N(CH ₃) ₂	78.4	195–197 dec	-44.06 (0.463)	C28H34N2O8 HCl·H2O
1 4d	Н	(CH ₂) ₂ ·N	88.3	225-228 dec	-69.81 (0.424)	C ₃₀ H ₃₆ N ₂ O ₈ ·HCl·H ₂ O
1 4e	\langle		78.6	205-210 dec	-44.08 (0.549)	C ₂₈ H ₃₂ N ₂ O ₈ ·HCl·H ₂ O
1 4f	н	(CH ₂) ₂	50.5	156–158	-84.49 (0.258)	C ₃₀ H ₃₂ N ₂ O ₈ ·HCl·H ₂ O
1 4g	н	CH2 CH2	34.0	17 9– 180	-82.41 (0.381)	C28H28N2O8·HCl·H2O

Table III. Physical Properties of 14 Shown in Scheme II

^a Yield from 6. ^b All compounds were recrystallized from Et₂O. ^c All compounds were carried out in DMSO. ^d Analyses for C, H, and N were within ±0.4% of the calculated values. ^e Dec: decomposed.

of compounds 7-10, 12a-y and 14a-g are summarized in Table IV. Compounds 8 and 10, possessing a hydroxyalkyl group, exhibited a stronger inhibitory effect on Topo II than that of VP-16, with similar cytotoxicity. However, these compounds also inhibited tubulin polymerization. On the other hand, all compounds of 12a-y with various amino groups and 14a-g with various amido groups showed no inhibitory effect against tubulin polymerization. The

Table IV.	Biological Evaluation of	
48-Alkyl-4-	desoxypodophyllotoxin Derivatives and VP-16	

	cytotoxicity ^a	tubulina	
	P388 leukemia	polymerization	Topo IIª
compd	(IC ₅₀ , M)	(IC ₅₀ , μM)	$(IC_{50}, \mu M)$
VP-16	1.0 × 10-8	>60	59.2 (1.0) ^b
7	1.5×10^{-8}	NT ^c	NT
8	5.0 × 10-8	2	13.8 (0.23)
10	5.0 × 10−8	26	42.1 (0.71)
1 2a	6.0 × 10-8	>100	36.7 (0.62)
1 2b	1.2 × 10−8	>167	73.5 (1.24)
1 2c	7.0 × 10−8	>100	17.2 (0.29)
1 2d	$6.6 imes 10^{-7}$	>167	25.1 (0.42)
1 2e	1.6×10^{-7}	>100	75.8 (1.28)
1 2f	1.9 × 10−8	>167	61.4 (1.03)
12g	6.3 × 10− ⁸	>62	112.1 (1.89)
12h	3.3 × 10−8	>167	60.9 (1.02)
12i	1.2 × 10−8	>167	67.7 (1.14)
1 2 j	1.5×10^{-7}	>167	97.3 (1.64)
1 2k	2.6 × 10−8	>167	58.3 (0.98)
1 21	2.0 × 10−8	>100	58.3 (0.98)
12m	>1.0 × 10−8	NT	NT
1 2 n	4.0 × 10− ⁸	>100	13.3 (0.22)
1 2 0	1.0 × 10−9	>99	32.5 (0.54)
1 2p	5.5 × 10−8	>100	26.9 (0.45)
12q	3.7×10^{-8}	>133	30.0 (0.50)
12r	3.7×10^{-8}	>100	53.8 (0.90)
1 2s	4.1×10^{-8}	>167	60.9 (1.02)
12t	3.3 × 10−9	>167	29.8 (0.53)
12u	3.0×10^{-9}	>132	33.6 (0.56)
12v	2.6×10^{-7}	>167	115.7 (1.95)
1 2w	1.0×10^{-7}	>100	31.4 (0.52)
12x	1.4×10^{-7}	>100	31.4 (0.52)
12y	4.3 × 10 ⁻⁹	>100	32.3 (0.54)
1 4a	2.2×10^{-7}	>100	NT
14b	8.4×10^{-9}	>100	266.4 (4.50)
1 4c	3.2×10^{-8}	>100	251.6 (4.25)
14d	3.0×10^{-6}	>100	60.6 (1.02)
14e	1.2×10^{-9}	>100	296 (5.00)
14f	1.5×10^{-6}	>100	NT
14g	2.2 × 10−8	>100	NT

 a See the Experimental section. b Value in parentheses is the ratio of IC_{50} of individual compound/IC_{50} of VP-16. c NT: not tested.

compounds with various amino or amido groups are classified as follows: (1) those with a linear alkyl chain containing one N atom (12a-f), (2) those with a cyclic alkyl chain or benzene ring containing one N atom (12g-k), (3) those with a linear alkyl chain or a benzene ring containing two N atoms (12l-r), (4) those with a cyclic alkyl chain containing two or three N atoms, or with a pyridine ring (12s-y), and (5) those with an amido group (14a-g).

In the first group (12a-f), a comparison of compounds containing an aminoethyl group (12a) and an aminopropyl group (12b) against Topo II suggests that the introduction of the N atom at the β -position of the 4β -alkyl group of 4-desoxypodophyllotoxin was better for the inhibition of Topo II than that at the *r*-position. However, their cytotoxicities against P388 were similar. Therefore, we synthesized compounds with a N atom at the β -position of the 4β -alkyl group of 4-desoxypodophyllotoxin. By a comparison of 12c-f, the introduction of hydroxy groups (but not ether groups) at the end of the linear alkyl chain containing one N atom enhanced the inhibitory effect against Topo II. However, the degree of Topo II inhibition did not correlate with cytotoxicity.

In the second group (12g-k), the inhibitory effects against Topo II and cytotoxicity were nearly equal to those of 12f. These linear aminoalkyl chain groups were not necessary for the inhibition of Topo II or cytotoxicity. No significant improvement of the inhibition of Topo II and cytotoxicity was found in the above two groups containing one N atom.

Table V. Antitumor Activity against L1210 in Vivo of 4β -Alkyl-4-desoxypodophyllotoxin Derivatives and VP-16

compd	dose (mg/kg/day)	ILS ^a max.(%)	survivors (30 days)
VP-16	10	102	3/6
1 2a	2.5	67	0/6
1 2f	20	106	0/6
12 j	10	53	0/6
12k	10	81	0/6
1 2 1	40	74	0/6
1 20	2.5	103	3/6
12s	5		6/6
1 2t	2.5	102	5/6
12u	1.3	140	1/6

^a Male CDF₁ mice (7 weeks old) were inoculated ip with 1×10^5 L1210 cells on day 0, and each compound was administered ip on days 1–5. Compounds were dissolved in saline containing 3.5% DMSO and 6.5% Tween 80. Each group except the control consisted of six mice. The control group consists of 10 mice. The percentage increase in the life span (ILS) was maximal, which was calculated from the mean survival period of the treated group compared with that of the control group. The numbers of mice that survived for 30 days are not included in calculations of the ILS value.

In the third group (121-r) containing two N atoms, the inhibitory effect against Topo II and cytotoxicity against P388 were only slightly affected by the distance between the N atoms. Compound 120 was more potent in both cytotoxicity against P388 (1.0×10^{-9} M) and inhibition of Topo II, compared with VP-16.

In the fourth group (12s-y), the introduction of a pyridine ring (12w,x) induced more inhibition of Topo II than that of VP-16, but decreased the cytotoxicity dramatically. On the other hand, 12s-u,y exhibited similar or more Topo II inhibition than VP-16, and each compound was also highly cytotoxic (IC₅₀: 4.1, 3.3, 3.0, and 4.3×10^{-9} M, respectively).

The fifth group with various amido groups (14a-g) tended toward less inhibition of Topo II, but the cyto-toxicity remained.

We were unable to determine a good correlation between the potency of Topo II inhibition and the cytotoxicity of the compounds tested. We therefore selected representative compounds which possessed the same or stronger inhibition of Topo II and cytotoxicity than VP-16 and examined the antitumor activity in vivo. In antitumor activity in vivo against L1210 leukemia (ip-ip) (Table V), compounds **120,s-u** were nearly equal or superior to VP-16. Antitumor activity against P388 leukemia (sc-iv) of **12s** and **12t** were nearly equal or superior to that of VP-16 (Table VI). On the other hand, **120,s-u** exhibited more tumor growth inhibition against Lewis lung (sc-iv) (Table VI) than VP-16. In addition, **120,s,u** had better antitumor activity against Lewis lung carcinoma (iv-iv) than VP-16 (Table VII).

Furthermore, we examined the cell growth inhibitory effects of 120,s-u and VP-16 upon various human nonsmall cell lung cancer cell lines in vitro to predict the effect against NSCLC (Table VIII). All of the tested compounds exhibited growth inhibition at lower concentrations than those of VP-16 in vitro (Table VIII). We also observed that these compounds were distributed throughout the lung tissue at higher concentrations and for longer than VP-16.¹⁵ These results suggest that 120,s-u could be appropriate compounds against NSCLC.

The fact that these C–C bond compounds with various amino groups exhibited stronger antitumor activity and a different distribution from VP-16 suggests that both the β -D-glucose and acetal group, which was reported as an active structural requirements of VP-16,¹⁶ are not

Table VI. Antitumor Activity against P-388 and Lewis Lung in Vivo of 120, 128, 12t, 12u, and VP-16

compd	P388ª dose (mg/kg/day)	ILS (%)	Lewis lung ^c dose (mg/kg/day)	tumor growth inhibition (%)
VP-16	7	226 (2/7)b	12	60**d
	4	196	7	39*
	2.3	151		
1 2o	2.3	236 (1/7)	4	95***
	1.3	196	2.3	51**
	0.8	116		
12s	4	259 (3/7)	7	97***
	2.3	165	4	72*
	1.3	131		
12t	2.3	231 (2/7)	4	91***
	1.3	202	2.3	50**
	0.8	143	1.3	40*
12u	0.8	182	2.3	96***
	0.4	112	1.3	81***
	0.3	67	0.3	37*

^a Male CDF₁ mice (5 weeks old) were inoculated sc with 1×10^6 P388 cells on day 0, and each compound was administered iv on days 1-5. Compounds were dissolved in saline containing 3.5% DMSO and 6.5% Tween 80. Each group except control consisted of seven mice. The control group consisted of 10 mice. The percentage increase of life span (ILS) was maximal, which was calculated from the mean survival period of the treated group compared with that of the control group. The numbers of mice that survived for 30 days are not included in calculating the ILS value. ^b Number of mice that survived for 30 days: survived mice/number of control mice. c Lewis lung carcinoma (2 mm³) were inoculated sc into male BDF_1 mice (5 weeks old) on day 0, and each compound was administered iv for 5 days on days 4-8. Compounds were dissolved in saline, and VP-16 was dissolved in saline containing 3.5% DMSO and 6.5% Tween 80. Each group, except the control, consisted of seven mice. The control group consisted of 10 mice. The percentage inhibition of tumor growth was calculated from the mean tumor weight of the treated group compared with that of the control group on day 17. d^* , **, ***: Significantly different from the control at p < 0.05, 0.01, and 0.001, respectively.

necessary for inhibition of Topo II or antitumor activity in vitro and in vivo. Further detailed biological effects of the selected compounds are being evaluated.

Experimental Section

All melting points were determined on a Yanagimoto MP-3 micro melting point apparatus and are uncorrected. The instruments used were as follows: elemental analyses, Yanagimoto MT-3; IR spectra, Hitachi I-3000 IR spectrometer; specific rotation, Horiba SEPA-200 spectropolarimeter; FAB-MS spectra, JMS-DX303; ¹H NMR spectra, FT NMR JNM-FX90Q spectrometer, JEOL JNM-GSX400 spectrometer. Chemical shifts were reported in ppm (δ) downfield from tetramethylsilane as the internal standard, and coupling constants are given in hertz. Column chromatography was carried out on Merck silica gel (Kieselgel 60; 70-230 mesh). Preparative thin-layer chromatography (PTLC) was carried out on precoated silica gel plates (Merck Kieselgel 60F₂₅₄, 0.5-mm thickness). All new compounds were characterized by melting point, optical rotation, ¹H NMR, FAB-MS, and IR spectral analyses as well as elemental analyses.

4'-Demethyl-4'-O-(benzyloxycarbonyl)-4 β -allyl-4desoxypodophyllotoxin (4). BF₃·Et₂O (0.6 mL) was added to a mixture of 4'-demethyl-4'-O-(benzyloxycarbonyl)epipodophyllotoxin (3) (1 g, 1.87 mmol)¹⁷ and trimethylallylsilane (426 mg, 3.73 mmol) in CH₂Cl₂ (15 mL) at 0 °C with stirring. After 1 h, the reaction mixture was quenched with pyridine (0.6 mL), and the mixture was extracted with AcOEt (100 mL). The extract was washed consecutively with cold 1 N HCl and saturated NaCl, dried over MgSO₄, and concentrated in vacuo at 30

Table VII. Antitumor Activity against Lewis Lung^a in Vivo of 120, 125, 12t, 12u, and VP-16

	dose	bwc ^b	Lewis lung
compd	(mg/kg/day)	(g, day 6-0)	ILS ^c (%)
control		+2.3	
VP-16	21	-3.8	91**(1/7) ^d
	12	-2.6	81***
	7	-0.8	21***
	4	-0.4	24***
	2.3	+0.0	17**
1 20	4	-2.9	209** (6/7)
	2.3	-0.7	90*** (2/7)
	1.3	+0.2	72***
	0.77	+0.44	38***
1 2s	7	-3.5	55 (5/7)
	4	-1.0	108***
	2.3	-0.6	75***
	1.3	+0.1	14**
	0.77	+0.7	20**
1 2t	7	-4.1	-44***
	4	-1.6	-13 (1/7)
	2.3	-0.5	133***
	1.3	-0.2	63***
	0.77	+0.3	43***
1 2u	1.3	-3.3	$127^{***}(3/7)$
	0.77	-0.9	91***
	0.44	+0.3	67***
	0.25	+0.9	24***

^a Lewis lung carcinoma, 3.2×10^5 cells were inoculated into male BDF₁ mice (5 weeks old) on day 0 intraveneously, and compounds were administered iv from days 1–5. Each group consists of seven mice, except the control group which included 14 mice. ^b bwc: mean body weight change. ^c Number of 60-day survivors is not included to calculations to ILS (increased life span) value. ^d Number of mice that survived for 30 days/number of control mice. **, ***: significantly different from the control at p < 0.005, p < 0.001.

Table VIII. Growth Inhibition of 120, 12s, 12t, 12u, and VP-16 against Various Human Cell Lines

	$ED_{50} (\mu g/mL)^a$				
cell line	VP-16	120	12s	12t	12u
lung small cell ca.					
RERF-LC-MA	>59	14	27	35	5.8
SBC-3	1.6	0.41	0.54	0.16	0.28
lung non-small cell ca.					
Ā-549	2.9	0.82	1.8	1.0	0.76
PC-7	35	3.5	4.4	4.0	2.9
hepatoma					
HLF	19	2.8	4.0	2.7	1.6
HLE	1.5	0.23	0.36	0.31	0.13
renal cancer					
ACHN	13	2.0	2.7	1.1	2.0
G-402	4.8	0.33	0.35	0.18	0.25
colon carcinoma					
COLO201	59	13	29	13	9.3
COLO320DM	14	2.0	3.2	2.1	0.99

^a See the Experimental Section. ED_{50} was the concentration of compound which afforded a 50% reduction in cell number after 4 h.

°C. The residue was purified by silica gel column chromatography with CHCl₃. Recrystallization from Et₂O gave 3c (1 g, 95.8%): ¹H NMR (CDCl₃) δ 7.30–7.43 (5H, m, *Ph*CH₂OCO), 6.72 (1H, s, 5-H), 6.46 (1H, s, 8-H), 6.31 (2H, s, 2', 6'-H), 5.94 (1H, d, J = 1.5 Hz, OCH₂O), 5.93 (1H, d, J = 1.5 Hz, OCH₂O), 5.93 (1H, d, J = 1.5 Hz, OCH₂O), 5.80 (1H, ddt, J = 17, 10.5, 6.5 Hz, CH₂CH=CH₂), 5.25 (2H, s, PhCH₂OCO), 5.12 (1H, dq, J = 17, 2, 1.5 Hz, CH₂CH=CH₂), 5.11 (1H, dq, J = 10.5, 1.5 Hz, CH₂CH=CH₂), 4.58 (1H, d, J = 5 Hz, 1-H), 4.25 (2H, m, 11-H), 3.68 (6H, s, 3', 5'-OCH₃), 3.27 (1H, m, 4-H), 3.07 (1H, dd, J = 14.5, 5 Hz, 2-H), 2.93 (1H, m, 3-H), 2.57 (1H, m, CH₂CH=CH₂), 2.42 (1H, m, CH₂CH=CH₂). Anal. (C₃₂H₃₀O₉) C, H.

4'-Demethyl-4'-O-(benzyloxycarbonyl)- 4β -(formylmethyl)-4-desoxypodophyllotoxin (5). A mixture of 4

(1 g, 1.79 mmol), N-methylmorphorine N-oxide (NMO) (225 mg, 1.92 mmol) and osmic acid (OsO₄) (43 mg, 0.17 mmol) in acetone (13 mL) was stirred for 1 h at room temperature. A saturated solution of NaHSO₃ (5 mL) mixed with ice (50 g) was added, and the reaction mixture was extracted with AcOEt. The extract was washed consecutively with 1 N HCl and H₂O, dried over MgSO₄, and concentrated in vacuo at 30 °C. The residue was purified by silicagel column chromatography with CHCl₃/ MeOH (20/1). The oxidation product (1 g) and Pb(OAc)₄ (795 mg, 1.79 mmol) in benzene (80 mL) was stirred for 0.5 h at room temperature. The reaction mixture was filtered off and then washed with AcOEt. The filtrate was concentrated in vacuo at 30 °C. The residue was purified by silica gel column chromatography with CHCl₃/ MeOH (20/1). Recrystallization from Et₂O gave 5 (934) mg, 92.9%): ¹H NMR (DMSO- d_6) δ 9.73 (1H, s, CHO), 7.39 (5H, s, CO₂CH₂Ph), 6.88 (1H, s, 5-H), 6.46 (1H, s, 8-H), 6.35 (2H, s, 2',6'-H), 5.96 (2H, s, OCH₂O), 5.23 (2H, s, CO_2CH_2Ph), 4.54 (1H, d, J = 3.6 Hz, 1-H), 3.96-4.32 $(1H, m, 11\alpha - H), 3.63 (6H, s, 3', 5' - OCH_3), 3.48 - 3.92 (1H, m)$ m, 11 β -H), 2.56–3.40 (5H, m, 2,3,4-H, CH₂CHO). Anal. $(C_{31}H_{28}O_{10})$ C, H.

4'-Demethyl-4'-O-(benzyloxycarbonyl)-4β-(2-oxo-2hydroxyethyl)-4-desoxypodophyllotoxin (6). A solution of CrO_3 (178 mg, 1.78 mmol), concentrated H_2SO_4 (0.2 mL), and $H_2O(0.9 \text{ mL})$ was added dropwise to acetone solution (20 mL) of 5 (1 g, 1.78 mmol) at 0 °C. After stirring for 3 h, i-PrOH (1 mL) was added. The mixture was extracted with AcOEt. The extract was washed with saturated NaCl, dried over MgSO₄, and concentrated in vacuo at 30 °C. The residue was purified by silica gel column chromatography with CHCl₃/MeOH (10/1). Recrystallization from Et₂O gave 6 (609 mg, 59.4%): ¹H NMR $(DMSO-d_6) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, b, CO_2H), 7.40 (5H, s, CO_2-13.0) \delta 12.5-13.0 (1H, s, CO_2-13.0) \delta 12.5-13.0$ CH₂Ph), 6.94 (1H, s, 5-H), 6.46 (1H, s, 8-H), 6.34 (2H, s, 2',6'-H), 5.96 (2H, s, OCH₂O), 5.23 (2H, s, CO₂CH₂Ph), 4.52 (1H, d, J = 5.6 Hz, 1-H), 4.27 (1H, dd, J = 7.6, 3.8 Hz, 11α -H), 3.86 (1H, m, 11β -H), 3.63 (6H, s, 3', 5'-OCH₃), 3.20-3.40 (3H, m, 2,3,4-H), 2.80-3.00 (2H, m, CH₂CO₂H). Anal. $(C_{31}H_{28}O_{11})$ C, H.

4'-Demethyl-4 β -(2-oxo-2-hydroxyethyl)-4-desoxypodophyllotoxin (7). 6 (200 mg, 0.347 mmol) was reduced for 3 h on 5% Pd/C (40 mg) with H₂ (2 atm) in CH₂Cl₂ (10 mL). The reaction mixture was filtered off and washed with AcOEt, and the filtrate was concentrated in vacuo at 30 °C. Recrystallization from CH₃CN gave 7 (98 mg, 66.3%): ¹H NMR (DMSO-d₆) δ 12.3–12.4 (1H, b, COOH), 8.22 (1H, s, 4'-OH), 6.91 (1H, s, 5-H), 6.43 (1H, s, 8-H), 6.21 (2H, s, 2',6'-H), 5.96 (1H, s, OCH₂O), 5.95 (1H, s, OCH₂O), 4.40 (1H, d, J = 5.3 Hz, 1-H), 4.24 (1H, dd, J =8.1, 4.1 Hz, 11 α -H), 3.84 (1H, dd, J = 1.98, 8.91 Hz, 11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 3.10–3.57 (3H, m, 2,3,4-H), 2.80–3.00 (2H, m, CH₂COOH). Anal. (C₂₃H₂₂O₉) C, H.

4'-Demethyl-4 β -(2-hydroxyethyl)-4-desoxypodophyllotoxin (8). Zn(BH₄)₂/Et₂O (27 mL, 4.14 mmol) was added dropwise to a solution of 5 (543 mg, 0.97 mmol) in THF (60 mL) with stirring at -5 to 0 °C. After being stirred for 30 min, the reaction mixture was added to cold 1 N HCl. The mixture was extracted with AcOEt, washed with saturated NaCl, dried over MgSO₄, and concentrated in vacuo at 30 °C. The residue was purified by silica gel column chromatography with AcOEt/*n*-hexane (1:1). The product (435 mg) was reduced for 2 h on 5% Pd/C (43 mg) with H₂ (1 atm) in CH₃OH (10 mL). The reaction mixture was filtered off and washed with AcOEt, and the filtrate was concentrated in vacuo at 30 °C. The residue was purified by silica gel column chromatography with CHCl₃/ CH₃OH (20/1). Recrystallization from Et₂O gave 8 (309 mg, 74.5%): ¹H NMR (DMSO- d_6) δ 6.77 (1H, s, 5-H), 6.46 (1H, s, 8-H), 6.29 (2H, s, 2',6'-H), 5.94 (1H, d, J = 1.0 Hz, OCH₂O), 5.93 (1H, d, J = 1.0 Hz, OCH₂O), 5.38 (1H, s, 4'-OH), 4.55 (1H, d, J = 4.5 Hz, 1-H), 4.33 (1H, m, 11 α -H), 4.16 (1H, m, 11 β -H), 3.8–3.7 (2H, overlapped, CH₂OH), 3.77 (6H, s, 3',5'-OCH₃), 3.32 (1H, m, 4-H), 2.99 (2H, m, 2,3-H), 2.03 (1H, m, CH₂CH₂OH), 1.74 (1H, m, CH₂CH₂-OH), 1.45 (1H, t, J = 4.0 Hz, CH₂OH). Anal. (C₂₃H₂₄O₈) C, H.

4'-Demethyl-4'-O-(benzyloxycarbonyl)-4\beta-(2-formylethyl)-4-desoxypodophyllotoxin (9). 2 M BH₃·Me₂S/ THF (4.3 mL, 8.6 mmol) was added dropwise to a solution of 4 (4 g, 7.17 mmol) in THF (40 mL) at 0 °C and then stirred for 1 h at room temperature. The reaction mixture was concentrated in vacuo at 30 °C. The residue was oxidized by pyridinium chlorochromate (3.0 g, 13.9 mmol) in CH_2Cl_2 (10 mL) for 10 h at room temperature. To the reaction mixture were added AcOEt (100 mL) and florisil (10g). The reaction mixture was then filtered and washed with AcoEt, and the filtrate was concentrated in vacuo at 30 °C. The residue was purified by silica gel column chromatography with n-hexane/AcOEt (1/1). Recrystallization from Et₂O gave 9 (1.85 g, 44.9%): ¹H NMR (CDCl₃) δ 9.83 (1H, s, CHO), 7.40 (5H, m, CO₂CH₂Ph), 6.83 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.28 (2H, s, 2',6'-H), 5.94 (2H, s, OCH₂O), 5.25 (2H, s, CO₂CH₂Ph), 4.58 (1H, d, J = 4.6Hz, 1-H), 4.37 (1H, m, 11α -H), 4.11 (1H, m, 11β -H), 3.67 (6H, s, 3',5'-OCH₃), 3.04-3.10 (1H, m, 4-H), 2.86-3.00 (2H, m, 2,3-H), 2.49-2.67 (2H, m, CH₂CHO), 1.83-2.21 (2H, m, CH_2CH_2CHO). Anal. $(C_{32}H_{30}O_{10})$ C, H.

4'-Demethyl-4 β -(3-hydroxypropyl)-4-desoxypodophyllotoxin (10). Compound 10 (214 mg, 48.5%, recrystallized from Et₂O) was synthesized from 9 (574 mg, 1.0 mmol) and Zn(BH₄)₂/Et₂O (27 mL, 4.14 mmol) by the method described for the synthesis of 8: ¹H NMR (DMSOd₆) δ 8.19 (1H, s, 4'-OH), 6.83 (1H, s, 5-H), 6.42 (1H, s, 8-H), 6.20 (2H, s, 2', 6'-H), 5.94 (1H, d, J = 1.0 Hz, OCH₂O), 5.93 (1H, d, J = 1.0 Hz, OCH₂O), 4.4 (1H, d, J = 5.5 Hz, 1-H), 4.41 (1H, t, J = 5.0 Hz, CH₂OH), 4.36 (1H, t, J =8.0 Hz, 11 α -H), 4.10 (1H, dd, J = 11.0, 8.0 Hz, 11 β -H), 3.61 (6H, s, 3',5'-OCH₃), 3.44 (2H, q, J = 5.0 Hz, CH₂OH), 2.86-3.11 (3H, m, 2,3,4-H), 1.82 (1H, m, CH₂CH₂CH₂OH), 1.53 (1H, m, CH₂CH₂CH₂OH), 1.45 (2H, m, CH₂CH₂CH₂-OH). Anal. (C₂₄H₂₆O₈) C, H.

General Synthetic Method for Type 12 Compounds (12a-y). Compound 5 (91 mg, 0.162 mmol) or 9 (93 mg, 0.162 mmol) was added to a mixture of the appropriate amine (0.167 mmol), AcOH (0.1 mL), and NaCNBH₃ (10 mg, 0.19 mmol) in CH₃OH (5 mL) at 0 °C with stirring. After the mixture was stirred at room temperature for 1 h, AcOEt (100 mL) was added, washed with cold saturated NaHCO₃, followed by washing to pH 6-7 with H_2O . The extract was dried over MgSO4 and concentrated in vacuo below 30 °C. The residue was purified by silica gel column chromatography with $CHCl_3/CH_3OH(5/1)$. The main spot was collected, concentrated in vacuo below 30 °C, and dried in vacuo at room temperature. The residue was reduced for 10 h at room temperature on 5% Pd-C (20 mg) with H_2 (1 atm) in MeOH (10 mL). The reaction mixture was filtered off and washed with AcOEt, and then the filtrate was concentrated below 30 °C. The residue was purified by preparative TLC with CHCl₃/MeOH (10/ 1). The eluate with $CHCl_3$ -MeOH (10/1) was concentrated

below 30 °C. To the residue in $ClCH_2CH_2Cl (2 mL)$ was added 4 N HCl-AcOEt (0.1 mL). The reaction mixture was concentrated in vacuo at below 30 °C. Recrystallization from Et₂O gave compounds 12a-y, respectively.

4'-Demethyl-4 β -[2-(*N*,*N*-dimethylamino)ethyl]-4desoxypodophyllotoxin hydrochloride (12a): yield 81.8%; ¹H NMR (CD₃OD) δ 6.81 (1H, s, 5-H), 6.47 (1H, s, 8-H), 6.29 (2H, s, 2',6'-H), 5.93 (1H, d, *J* = 1.0 Hz, OCH₂O), 5.92 (1H, d, *J* = 1.0 Hz, OCH₂O), 4.56 (1H, d, *J* = 5.5 Hz, 1-H), 4.42 (1H, dd, *J* = 8.5, 7.5 Hz, 11 α -H), 4.17 (1H, dd, *J* = 11, 8.5 Hz, 11 β -H), 3.71 (6H, s, 3',5'-OCH₃), 3.30 (2H, overlapped, CH₂N), 3.24 (1H, m, 4-H), 3.17 (1H, dd, *J* = 14.5, 5.5 Hz, 2-H), 3.05 (1H, m, 3-H), 2.87 (6H, s, N(CH₃)₂), 2.19 (1H, m, CH₂CH₂N), 1.91 (1H, m, CH₂CH₂N). Anal. (C₂₅H₂₉NO₇·HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[3-(*N*,*N*-dimethylamino)propyl]-4desoxypodophyllotoxin hydrochloride (12b) was prepared by using 9 as starting material: yield 61.5%; ¹H NMR (DMSO- d_6) δ 9.74 (1H, b, N⁺H), 8.22 (1H, s, 4'-OH), 6.89 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.20 (2H, s, 2',6'-H), 5.98 (1H, d, J = 1.0 Hz, OCH₂O), 5.96 (1H, d, J = 1.0 Hz, OCH₂O), 4.43 (1H, d, J = 5.5 Hz, 1-H), 4.38 (1H, t, J =8.0 Hz, 11 α -H), 4.12 (1H, dd, J = 11.0, 8.0 Hz, 11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 3.12 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 3.08 (2H, m, CH₂N), 3.05 (1H, m, 4-H), 2.86 (1H, m, 3-H), 2.75 (6H, s, N(CH₃)₂), 1.84 (1H, m, CH₂CH₂CH₂N), 1.76 (1H, m, CH₂CH₂CH₂N), 1.61 (1H, m, CH₂CH₂CH₂N), 1.41 (1H, m, CH₂CH₂CH₂N). Anal. (C₂₆H₃₁NO₇·HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-(2-hydroxyethyl)amino]ethyl]-4-desoxypodophyllotoxin hydrochloride (12c): yield 72.0%; ¹H NMR (CD₃OD) δ 6.83 (1H, s, 5-H), 6.47 (1H, s, 8-H), 6.29 (2H, s, 2',6'-H), 5.93 (1H, d, J = 1.0 Hz, OCH₂O), 5.92 (1H, d, J = 1.0 Hz, OCH₂O), 4.56 (1H, d, J = 5.5 Hz, 1-H), 4.42 (1H, dd, J = 8.5, 7.5 Hz, 11 α -H), 4.14 (1H, dd, J = 11.0, 8.5 Hz, 11 β -H), 3.86 (2H, t, J = 5.5 Hz, NCH₂CH₂OH), 3.71 (6H, s, 3',5'-OCH₃), 3.30 (2H, m, CH₂CH₂NCH₂CH₂OH), 3.2-3.3 (3H, m, 4-H, CH₂CH₂OH), 3.17 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 3.05 (1H, m, 3-H), 2.91 (3H, s, NCH₃), 2.23 (1H, m, CH₂CH₂OH). Anal. (C₂₆H₃₁NO₈·HCl·2H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-(1,3-dihydroxy-2propyl]amino]ethyl]-4-desoxypodophyllotoxin hydrochloride (12d): yield 67.0%; ¹H NMR (DMSO- d_6) δ 9.29 (1H, b, N⁺H), 7.96 (1H, s, 4'-OH), 6.95 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.23 (2H, s, 2',6'-H), 5.97 (1H, d, J = 1.0Hz, OCH₂O), 5.96 (1H, d, J = 1.0 Hz, OCH₂O), 5.24 (2H, b, CH(CH₂OH)₂), 4.45 (1H, d, J = 5.5 Hz, 1-H), 4.36 (1H, t, J = 8.0 Hz, 11 α -H), 4.17 (1H, dd, J = 11.0, 8.0 Hz, 11 β -H), 3.73 (4H, b, CH(CH₂OH)₂), 3.64 (6H, s, 3',5'-OCH₃), 3.2-3.5 (2H, m, CH₂N), 3.39 (1H, b, CH(CH₂OH), 3.15 (1H, m, 4-H), 3.09 (1H, overlapped, 2-H), 2.89 (1H, m, 3-H), 2.81 (3H, b, NCH₃), 2.28 (1H, m, CH₂CH₂N), 1.91 (1H, m, CH₂CH₂N). Anal. (C₂₇H₃₃NO₉·HCl·0.5H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-(2-methoxyethyl)amino]ethyl]-4-desoxypodophyllotoxin hydrochloride (12e): yield 92.0%; ¹H NMR (DMSO-d₆) δ 9.29 (1H, b, N⁺H), 8.26 (1H, s, 4'-OH), 6.97 (1H, d, J = 7.9 Hz, 5-H), 6.46 (1H, s, 8-H), 6.20 (2H, s, 2', 6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.45 (1H, d, J = 5.6 Hz, 1-H), 4.36 (1H, t, J = 7.2 Hz, 11 α -H), 4.17 (1H, m, 11 β -H), 3.69 (2H, m, CH₂OCH₃), 3.62 (6H, s, 3',5'-OCH₃), 3.30 (3H, s, CH₂-OCH₃), 2.82-3.39 (7H, m, 2,3,4-H), CH₂NCH₂), 2.76 (3H, s, NCH₃), 2.29 (1H, m, CH₂CH₂N), 1.86 (1H, m, CH₂CH₂N). Anal. ($C_{27}H_{33}NO_8$ ·HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-(N-methyl-N-hexylamino)ethyl]-4-desoxypodophyllotoxin hydrochloride (12f): yield 66.1%; ¹H NMR (DMSO- d_6) δ 9.73, 9.69 (1H, b, N⁺H), 8.23 (1H, s, 4'-OH), 7.00, 6.96 (1H, d, J = 7.9 Hz, 5-H), 6.46 (1H, s, 8-H), 6.19 (2H, s, 2', 6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.45 (1H, d, J = 5.5 Hz, 1-H), 4.36 (1H, t, J = 8.0 Hz, 11 α -H), 4.14, 4.11 (1H, dd, J = 14.5, 5.5 Hz, 11 β -H), 3.62 (6H, s, 3', 5'-OCH₃), 3.20 (1H, m, 4-H), 3.14 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 3.09 (1H, b, NCH₂-(CH₂)₄), 2.96 (1H, b, NCH₂(CH₂)₄), 2.88 (1H, b, 3-H), 2.73 (3H, s, NCH₃), 2.23 (1H, m, CH₂CH₂NCH₃), 1.82 (1H, m, CH₂CH₂NCH₃), 1.63 (2H, b, NCH₂CH₂(CH₂)₃), 1.29 (6H, b, NCH₂CH₂(CH₂)₃CH₃), 0.88 (3H, t, J = 7.0 Hz, N(CH₂)₅CH₃). Anal. (C₃₀H₃₉NO₇·HCl·H₂O) C, H, N.

4'-Demethyl-4β-[2-[α-(hydroxymethyl)pyrrolidino]ethyl]-4-desoxypodophyllotoxin hydrochloride (12g): yield 59.3%; ¹H NMR (DMSO- d_6) δ 9.63 (1H, b, N⁺H), 8.22 (1H, s, 4'-OH), 7.02 (1H, d, s, 5-H), 6.45 (1H, s, 8-H), 6.20 (2H, s, 2',6'-H), 5.99 (1H, s, OCH₂O), 5.96 $(1H, s, OCH_2O), 5.44 (1H, t, J = 5 Hz, CH_2OH), 4.44 (1H, t)$ d, J = 5.5 Hz, 1-H), 4.35 (1H, t, J = 8.0 Hz, 11 α -H), 4.13 $(1H, dd, J = 11.0, 8.0 Hz, 11\beta-H), 3.77 (1H, m, CH₂OH),$ 3.62 (6H, s, 3',5'-OCH₃), 3.54 (1H, m, NCHCH₂OH in pyrrolidine ring), 3.54 (1H, m, NCH_{β} in pyrrolidine ring), $3.54 (1H, m, CH_2CH_2N), 3.13 (1H, dd, J = 15.0, 5.0 Hz,$ 2-H), 3.13 (1H, m, NCH α in pyrrolidine ring), 3.13 (1H, m, 4-H), 3.00 (1H, m, CH₂N), 2.86 (1H, m, 3-H), 2.27 (1H, m, CH_2CH_2N), 2.08 (1H, m, $NCH(CH_2OH)CH_{\beta}CH_2$ in pyrrolidine ring), 1.95 (1H, m, NCH₂CH₆CH₂ in pyrrolidine ring), 1.90 (1H, m, CH₂CH₂N), 1.86 (1H, m, NCH₂CH_aCH₂ in pyrrolidine ring), 1.76 (1H, m, NCH(CH₂-OH) $CH_{\alpha}CH_{2}$ in pyrrolidine ring). Anal. (C₂₈H₃₃NO₈· HCl·0.5H₂O) C, H, N.

4'-Demethyl-4\beta-[2-(N-methyl-N-cyclohexylamino)ethyl]-4-desoxypodophyllotoxin hydrochloride (12h): yield 81.0%; ¹H NMR (DMSO- d_6) δ 9.94 (1H, b, N+H), 8.23 (1H, s, 4'-OH), 7.05, 7.02 (1H, d, 5-H), 6.46 (1H, s, 8-H), 6.20 (2H, s, 2', 6'-H), 5.99 (1H, d, J = 1.0 Hz, OCH_2O), 5.97 (1H, d, J = 1.0 Hz, OCH_2O), 4.45 (1H, d, J = 5.5 Hz, 1-H), 4.38 (1H, m, 11 α -H), 4.15 (1H, m, 11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 3.20 (1H, m, NCHCH₂ in cyclohexane ring), 3.12 (2H, m, 2,4-H), 2.87 (1H, m, 3-H), 2.80 (1H, m, CH₂N), 2.65 (3H, s, NCH₃), 2.27 (1H, m, CH₂-CH₂N), 1.97 (2H, m, NCHCH₆CH₂ in cyclohexane ring), 1.86 (1H, m, CH₂CH₂N), 1.84 (2H, m, NCHCH₂CH_B in cyclohexane ring), 1.62 (1H, m, NCHCH₂CH₂CH_B in cyclohexane ring), 1.42 (1H, m, NCHCH_{α}CH₂ in cyclohexane ring), 1.30 (2H, m, NCHCH₂CH_{α} in cyclohexane ring), $1.13 (1H, m, NCHCH_2CH_2CH_a in cyclohexane ring)$. Anal. $(C_{30}H_{37}NO_7 \cdot HCl \cdot H_2O) C, H, N.$

4'-Demethyl-4 β -[2-(1-piperidino)ethyl]-4-desoxypodophyllotoxin hydrochloride (12i): yield 61.0%; ¹H NMR (DMSO- d_6) δ 9.48 (1H, b, N⁺H), 8.23 (1H, s, 4'-OH), 6.96 (1H, s, 5-H), 6.46 (1H, s, 8-H), 6.19 (2H, s, 2',6'-H), 5.99 (1H, d, J = 0.5 Hz, OCH₂O), 5.96 (1H, d, J = 0.5 Hz, OCH₂O), 4.45 (1H, d, J = 5.5 Hz, 1-H), 4.37 (1H, t, J = 8.0 Hz, 11 α -H), 4.12 (1H, dd, J = 11.0, 8.0 Hz, 11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 3.44 (2H, m, NCH $_{\beta}$ CH₂ in piperidine ring), 3.26 (1H, m, CH₂CH₂N), 3.13 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 3.13 (1H, m, 4-H), 2.89 (1H, m, 3-H), 2.86 (2H, m, NCH $_{\alpha}$ CH₂ in piperidine ring), 2.24 (1H, m, CH₂CH₂N), 1.85 (1H, m, CH₂CH₂N), 1.79 (2H, m, NCH₂CH $_{\beta}$ CH₂ in piperidine ring), 1.68 (1H, m, NCH₂CH $_{2}$ CH $_{\beta}$ in piperidine ring), 1.38 (1H, m, NCH₂CH₂CH₂CH₂ in piperidine ring). Anal. (C₂₈H₃₃-NO₇·HCl·H₂O) C, H, N.

4'-Demethyl-4β-[2-(N-methyl-N-benzylamino)ethyl]-4-desoxypodophyllotoxinhydrochloride(12j): yield 69.8%; ¹H NMR (DMSO-d₆) δ 10.76 (1H, b, N⁺H), 7.96 (1H, b, 4'-OH), 7.55 (2H, b, Ph), 7.46 (3H, b, Ph), 6.90, 6.86 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.22 (2H, s, 2',6'-H), 5.98 (1H, d, J = 1.0 Hz, OCH₂O), 5.96 (1H, d, J = 1.0 Hz, OCH₂O), 4.45 (1H, d, J = 5.5 Hz, 1-H), 4.39 (1H, b, CH₂-Ph), 4.31 (1H, m, 11α-H), 4.22 (1H, b, CH₂Ph), 4.11 (1H, t, J = 8.5 Hz, 11β-H), 3.64 (6H, s, 3',5'-OCH₃), 3.10 (1H, overlapped, 2-H), 2.89 (1H, m, 3-H), 2.67 (3H, b, NCH₃), 2.33 (1H, m, CH₂CH₂N), 1.96 (1H, m, CH₂CH₂N), proton signals of 4-H and CH₂CH₂N were not clearly observed since their signals were extremely broadened. Anal. (C₃₁H₃₃NO₇·HCl·2.5H₂O) C, H, N.

4'-Demethyl-4β-(2-morpholinoethyl)-4-des**oxypodophyllotoxin hydrochloride (12k)**: yield 70.0%; ¹H NMR (DMSO- d_6) δ 10.48 (1H, b, N⁺H), 8.22 (1H, b, 4'-OH), 6.96 (1H, s, 5-H), 6.46 (1H, s, 8-H), 6.20 (2H, s, 2',6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.45 $(1H, d, J = 5.5 \text{ Hz}, 1\text{-}H), 4.37 (1H, t, J = 8.0 \text{ Hz}, 11\alpha\text{-}H),$ 4.14 (1H, dd, J = 11.0, 8.0 Hz, 11 β -H), 3.97 (2H, b, NCH_2CH_2O in morpholine ring), 3.73 (2H, t, J = 12.0 Hz, NCH_2CH_2O in morpholine ring), 3.62 (6H, s, 3',5'-OCH₃), 3.45 (1H, d, J = 12.0 Hz, NCH₆CH₂O in morpholine ring), 3.40 (1H, d, J = 12.0 Hz, NCH_aCH₂O in morpholine ring), $3.30 (1H, m, CH_2N), 3.15 (1H, m, 4-H), 3.11 (1H, dd, J =$ 14.0, 5.5 Hz, 2-H), 3.06 (3H, m, CH₂CHN, NCH₂CH₂O in morpholine ring), 2.88 (1H, m, 3-H), 2.28 (1H, m, CH₂-CH₂N), 1.88 (1H, m, CH₂CH₂N). Anal. (C₂₇H₃₁NO₈. $HCl H_2O) C, H, N.$

4'-Demethyl-4 β -[2-(*N*,*N*,*N*-trimethylhydrazino)ethyl]-4-desoxypodophyllotoxin hydrochloride (121): yield 89.2%; ¹H NMR (DMSO- d_6) δ 10.76 (1H, b, N⁺H), 8.10 (1H, b, 4'-OH), 6.81 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.30 (2H, s, 2',6'-H), 5.93 (1H, d, *J* = 1.0 Hz, OCH₂O), 5.92 (1H, d, *J* = 1.0 Hz, OCH₂O), 4.55 (1H, d, *J* = 5.5 Hz, 1-H), 4.43 (1H, dd, *J* = 8.5, 7.5 Hz, 11 α -H), 4.16 (1H, dd, *J* = 11.0, 8.5 Hz, 11 β -H), 3.71 (6H, s, 3',5'-OCH₃), 3.30 (2H, m, CH₂N), 3.24 (1H, m, 4-H), 3.15 (1H, dd, *J* = 14.5, 5.5 Hz, 2-H), 3.02 (1H, m, 3-H), 2.80 (6H, s, N(CH₃)₂), 2.72 (3H, s, N(CH₃)N), 2.13 (1H, m, CH₂CH₂N), 1.80 (1H, m, CH₂-CH₂N). Anal. (C₂₆H₃₂N₂O₇·HCl·0.5H₂O) C, H, N.

4'-Demethyl-4 β -[2-(*N*,*N*-dimethyl-*N*-phenylhydrazino)ethyl]-4-desoxypodophyllotoxin hydroxhloride (12m): yield 67.4%; ¹H NMR (DMSO-d₆) δ 7.17 (2H, dd, J = 8.5, 7.0 Hz, NPh), 7.01 (2H, d, J = 8.5 Hz, NPh), 6.67 (1H, t, J = 7.0 Hz, NPh), 6.66 (1H, s, 5-H), 6.39 (1H, s, 8-H), 6.18 (2H, s, 2',6'-H), 5.92 (1H, s, OCH₂O), 5.90 (1H, s, OCH₂O), 4.38 (1H, d, J = 5.5 Hz, 1-H), 4.30 (1H, t, J = 8.0 Hz, 11 α -H), 4.02 (1H, dd, J = 12.0, 8.0 Hz, 11 β -H), 3.61 (6H, s, 3',5'-OCH₃), 3.17 (1H, m, 4-H), 3.09 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 2.84 (1H, m, 3-H), 2.75 (3H, s, N(CH₃)Ph), 2.69 (2H, m, CH₂N(CH₃)), 2.38 (3H, s, N(CH₃)Ph), 1.93 (1H, m, CH₂CH₂N), 1.53 (1H, m, CH₂-CH₂N). Proton signals of N⁺H and 4'-OH were not clear. Anal. (C₃₁H₃₄N₂O₇·HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-[[2-(*N*,*N*-dimethylamino)ethyl]amino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12n): yield 55.0%; ^H NMR (CD₃OD) δ 6.80 (1H, s, 5-H), 6.47 (1H, s, 8-H), 6.27 (2H, s, 2',6'-H), 5.95 (1H, d, J = 1.0 Hz, OCH₂O), 5.94 (1H, d, J = 1.0 Hz, OCH₂O), 4.55 (1H, d, J = 4.5 Hz, 1-H), 4.41 (1H, m, 11 α -H), 4.26 (1H, m, 11 β -H), 3.76 (6H, s, 3',5'-OCH₃), 3.61 (2H, m, NHCH₂CH₂N), 3.47 (2H, br, NHCH₂CH₂N), 3.27 (1H, m, 4-H), 3.15 (2H, m, $CH_2NHCH_2CH_2N$), 3.05 (2H, overlapped, 2,3-H), 2.96 (6H, s, $N(CH_3)_2$), 2.27 (1H, m, $CH_2CH_2NHCH_2CH_2N$), 2.04 (1H, m, $CH_2CH_2NHCH_2CH_2N$). Anal. ($C_{27}H_{34}N_2O_7$ ·2HCl·2.5H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-[2-(N,N-dimethylamino)ethyl]-N-methylamino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (120): yield 71.7%; ¹H NMR (DMSOd₆) δ 6.95 (1H, s, 5-H), 6.44 (1H, s, 8-H), 6.23 (2H, s, 2', 6'-H), 5.95 (1H, d, J = 1.0 Hz, OCH₂O), 5.94 (1H, d, J = 1.0Hz, OCH₂O), 4.44 (1H, d, J = 4.5 Hz, 1-H), 4.36 (1H, t, J = 8.0 Hz, 11 α -H), 4.16 (1H, dd, J = 11.0, 8.0 Hz, 11 β -H), 3.64 (6H, s, 3',5'-OCH₃), 3.42 (6H, b, CH₂NCH₂CH₂N), 3.17 (1H, m, 4-H), 3.11 (1H, dd, J = 14.0, 5.5 Hz, 2-H), 2.90 (1H, m, 3-H), 2.80 (6H, s, N(CH₃)₂), 2.74 (3H, s, NCH₃), 2.26 (1H, m, CH₂CH₂NCH₂CH₂N), 1.89 (1H, m, CH₂CH₂-NCH₂CH₂N). Proton signals of N⁺H and 4'-OH were not clear. Anal. (C₂₈H₃₆N₂O₇·2HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-[3-(N,N'-dimethylamino)propyl]-N-methylamino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12p): yield 92.0%; ¹H NMR (DM-SO-d₆) δ 8.26 (1H, s, 4'-OH), 7.03 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.19 (2H, s, 2',6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.44 (1H, d, J = 5.2 Hz, 1-H), 4.37 (1H, m, 11 α -H), 4.34 (1H, dd, m, 11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 2.90-3.40 (9H, m, CH₂NCH₂CH₂CH₂N, 2,3,4-H), 2.75 (9H, m, N(CH₃)(CH₂)₃N(CH₃)₂), 1.91-2.34 (4H, m, CH₂CH₂NCH₂CH₂CH₂N). Proton signals of N⁺H were not clear. Anal. (C₂₉H₃₈N₂O₇·2HCl·3H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-[6-(N,N-dimethylamino)hexyl]-N-methylamino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12q): yield 75.0%; ¹H NMR (DM-SO-d₆) δ 11.0 (2H, b, N⁺H), 8.26 (1H, s, 4'-OH), 7.05 (1H, s, 5-H), 6.44 (1H, s, 8-H), 6.19 (2H, s, 2',6'-H), 5.99 (2H, s, OCH₂O), 4.18-4.43 (3H, m, 1, 11 α ,11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 2.51-3.62 (9H, m, 2,3,4-H, CH₂NCH₂(CH₂)₄-CH₂N), 2.75 (6H, s, N(CH₃)₂), 2.74 (3H, s, NCH₃), 2.27 (1H, m, CH₂CH₂NCH₂CH₂N), 1.85 (1H, m, CH₂CH₂NCH₂-CH₂N), 1.33-1.65 (8H, m, NCH₂(CH₂)₄-CH₂N). Anal. (C₃₂H₄₄N₂O₇-2HCl·1.5H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-[2-(N, N'-diethylamino)ethyl]amino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12r): yield 61.5%; ¹H NMR (DMSOd₆) δ 11.17 (1H, b, N⁺H), 8.20 (1H, b, 4'-OH), 7.05, 7.00 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.19 (2H, s, 2',6'-H), 5.99 (1H, s, OCH₂O), 5.96 (1H, s, OCH₂O), 4.45 (1H, d, J = 5.6Hz, 1-H), 4.37 (1H, t, J = 7.2 Hz, 11 α -H), 4.10–4.30 (1H, m, 11 β -H), 3.61 (6H, s, 3',5'-OCH₃), 3.00–3.60 (12H, m, 4, 2-H, CH₂NCH₂CH₂N(CH₂CH₃)₂)), 2.90 (1H, m, 3-H), 2.81 (3H, s, NCH₃), 2.32 (1H, m, CH₂CH₂N), 1.91 (1H, m, CH₂-CH₂N), 1.26 (6H, t, N(CH₂CH₃)₂). Anal. (C₃₀H₄₀N₂O₇-2HCl·2H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-[2-(1-piperidino)ethyl]amino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12s): yield 69.0%; ¹H NMR (DMSO-d₆) δ 11.41 (1H, b, N⁺H), 10.72, 10.66 (1H, b, N⁺H), 8.24 (1H, s, 4'-OH), 7.03, 6.97 (1H, s, 5-H), 6.47 (1H, s, 8-H), 6.20 (2H, s, 2',6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.45 (1H, d, J = 5.5 Hz, 1-H), 4.37 (1H, t, J = 7.5 Hz, 11 α -H), 4.13-4.17 (1H, m, 11 β -H), 3.63 (2H, m, NCH₂CH₂N), NCH₂CH₂N), 3.62 (6H, s, 3',5'-OCH₃), 3.57 (2H, m, NCH $_{\beta}$ -CH₂ in piperidine ring), 3.50 (2H, m, NCH₂CH₂N), NCH₂CH₂N), 3.45 (1H, m, CH₂CH₂NCH₂CH₂N), 3.16 (1H, m, 4-H), 3.14 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 3.08 (1H, m, CH₂CH₂NCH₂CH₂N), 2.90 (1H, m, 3-H), 2.84 (3H, b, NCH₃), 2.30 (1H, m, CH₂CH₂N), 1.90 (1H, m, CH₂CH₂N), 1.7-1.9 (5H,

m, NCH₂CH₂CH_{β} in piperidine ring), 1.42 (1H, m, NCH₂-CH₂CH_{α} in piperidine ring). Anal. (C₃₁H₄₀N₂O₇-2HCl·2H₂O) C, H, N.

4'-Demethyl-4β-[2-(4-piperidinopiperidin-1-yl)ethyl]-4-desoxypodophyllotoxin dihydrochloride (12t): yield 65.4%; ¹H NMR (DMSO- d_6 + D₂O (2:1)) δ 6.87 (1H, s, 5-H), 6.49 (1H, s, 8-H), 6.25 (2H, s, 2',6'-H), 5.95 (2H, s, OCH₂O), 4.51 (1H, d, J = 5.5 Hz, 1-H), 4.44 (1H, t, J = 8.0 Hz, 11α -H), 4.13 (1H, dd, J = 11.0, 8.0 Hz, 11β -H), 3.68 (2H, m, CHNC H_{g} CH₂ in piperidinopiperidine ring), 3.65 (6H, s, 3',5'-OCH₃), 3.43 (3H, m, NCH_bCH₂CHN in piperidinopiperidine ring), 3.10-3.30 (1H, m, 4-H, CH₂- CH_2N , 3.18 (1H, dd, J = 15.0, 5.5 Hz, 2-H), 2.40–3.10 (5H, overlapped, 3-H, $NCH_{\alpha}CH_{2}CHN$ in piperidinopiperidine ring, $CHNCH_{\alpha}CH_{2}$ in piperidinopiperidine ring), 2.30 (2H, m, NCH₂CH_{θ}CHN in piperidinopiperidine ring), 2.17 (1H, m, CH₂CH₂N), 1.80-2.00 (5H, m, CH₂CH₂N, NCH₂CH_a-CHN in piperidinopiperidine ring, $CHNCH_2CH_\beta CH_2$ in piperidine ring), 1.60–1.80 (3H, m, $NCH_2CH_aCH_bCH_2$ in piperidine ring), 1.43 (1H, m, NCH₂CH₂CH₂CH₂ in piperidine ring). Anal. $(C_{33}H_{42}N_2O_7 \cdot 2HCl \cdot H_2O) C, H, N.$

4'-Demethyl-4 β -[2-(4-methylpiperazin-1-yl)ethyl]-4-desoxypodophyllotoxin dihydrochloride (12u): yield 66.7%; ¹H NMR (DMSO- d_6) δ 6.91 (1H, s, 5-H), 6.43 (1H, s, 8-H), 6.23 (2H, s, 2',6'-H), 5.94 (1H, d, J = 1.0 Hz, OCH₂O), 5.93 (1H, d, J = 1.0 Hz, OCH₂O), 4.43 (1H, d, J = 5.5 Hz, 1-H), 4.35 (1H, t, J = 8.0 Hz, 11 α -H), 4.15 (1H, dd, J = 11.0, 8.0 Hz, 11 β -H), 3.64 (6H, s, 3',5'-OCH₃), 3.20– 3.50 (10H, m, CH₂CH₂N, NCH₂CH₂N in piperazine ring), 3.16 (1H, m, 4-H), 3.08 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 2.88 (1H, m, 3-H), 2.72 (3H, s, NCH₃), 2.17 (1H, m, CH₂CH₂N), 1.80 (1H, m, CH₂CH₂N). Proton signals of N⁺H and 4'-OH were not clear. Anal. (C₂₈H₃₄N₂O₇·2HCl·2H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-(2-morpholinoethyl)amino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12v): yield 66.0%; ¹H NMR (DMSO-d₆) δ 11.30 (1H, b, N⁺H), 10.78 (1H, b, N⁺H), 8.23 (1H, s, 4'-OH), 7.00 (1H, b, 5-H), 6.46 (1H, s, 8-H), 6.20 (2H, s, 2', 6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.45 (1H, d, J = 5.5 Hz, 1-H), 4.37 (1H, t, J = 8.0 Hz, 11α -H), 4.15 (1H, m, 11 β -H), 3.62 (6H, s, 3', 5'-OCH₃), 3.16 (1H, m, 4-H), 3.14 (1H, dd, J = 14.5, 5.5 Hz, 2-H), 3.00–4.10 (14H, m, CH₂CH₂-NCH₂CH₂N, NCH₂CH₂O in morpholine ring), 2.89 (1H, m, 3-H), 2.83 (3H, brs, NCH₃), 2.30 (1H, m, CH₂CH₂N), 1.91 (1H, m, CH₂CH₂N). Anal. (C₃₀H₃₈N₂O₈·2HCl·2H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-(4-pyridinylmethyl)amino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12w): yield 31.0%; ¹H NMR (DMSO- d_6) δ 8.85 (2H, m, pyridine ring), 8.02 (2H, m, pyridine ring), 6.90, 7.00 (1H, b, 5-H), 6.45 (1H, s, 8-H), 6.18 (2H, s, 2',6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.17-4.70 (5H, m, 1-H, NCH₂Py, 11-H), 3.61 (6H, s, 3',5'-OCH₃), 3.00-4.00 (4H, m, CH₂CH₂N(CH₃)CH₂, 2,4-H), 2.90 (1H, m, 3-H), 2.67 (3H, s, NCH₃), 2.40 (1H, m, CH₂CH₂N), 2.00 (1H, m, CH₂CH₂N). Proton signals of N⁺H and 4'-OH were not clear. Anal. (C₃₀H₃₂N₂O₇·2HCl·2H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-(2-pyridinylmethyl)amino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12x): yield 57.0%; ¹H NMR (DMSO- d_6) δ 8.68 (1H, d, J = 5.0 Hz, pyridine ring), 7.99 (1H, m, pyridine ring), 7.76 (1H, d, J = 7.6 Hz, pyridine ring), 7.53 (1H, m, pyridine ring), 6.95 (1H, s, 5-H), 6.44 (1H, s, 8-H), 6.19 (2H, s, 2', 6'-H), 5.99 (1H, s, OCH₂O), 5.97 (1H, s, OCH₂O), 4.50 (2H, s, NCH₂Py), 4.44 (1H, d, J = 5.3 Hz, 1-H), 4.32 (1H, t, J = 7.9 Hz, 11_{α} -H), 4.17 (1H, m, 11_{β} -H), 3.62 (6H, s, 3',5'-OCH₃), 3.11–3.40 (4H, m, CH₂CH₂N(CH₃)CH₂, 2,4-H), 2.89 (1H, m, 3-H), 2.76 (3H, s, NCH₃), 2.40 (1H, m, CH₂CH₂N), 1.99 (1H, m, CH₂CH₂N). Proton signals of N⁺H and 4'-OH were not clear. Anal. (C₃₀H₃₂N₂O₇·2HCl·1.5H₂O) C, H, N.

4'-Demethyl-4 β -[2-[N-methyl-N-(4-methylpiperazin-1-yl)amino]ethyl]-4-desoxypodophyllotoxin dihydrochloride (12y): yield 67.0%; ¹H NMR (DMSO-d₆) δ 13.00 (1H, b, N⁺H), 10.94 (1H, b, N⁺H), 7.05 (1H, s, 5-H), 6.44 (1H, s, 8-H), 6.19 (2H, s, 2',6'-H), 5.98 (2H, s, OCH₂O), 4.45 (2H, m, 4, 11_a-H), 4.12 (1H, m, 11_b-H), 3.61 (6H, s, 3',5'-OCH₃), 2.20–3.60 (13H, m, 2,3,4-H, CH₂CH₂NN, NNCH₂CH₂N in piperazine ring), 2.92 (6H, s, N(CH₃)N, NCH₃), 2.28 (1H, m, CH₂CH₂N), 2.04 (1H, m, CH₂CH₂N). Proton signals of 4'-OH were not clear. Anal. (C₂₉H₃₇N₃O₇· 2HCl·3H₂O) C, H, N.

General Synthetic Method for Type 14 Compounds (14a-g). Pivaloyl chloride (60 mg, 0.5 mmol) in AcOEt (2 mL) was added dropwise to a mixture solution of 6 (288 mg, 0.5 mmol) and (dimethylamino)pyridine (74 mg, 0.6 mmol) in AcOEt (5 mL) at 0 °C and stirred. After 0.5 h, the appropriate amine (1.0 mmol) in AcOEt (2 mL) was added dropwise to the reaction mixture. After the mixture was stirred for 0.5 h, AcOEt (100 mL) was added to the reaction mixture, which was then washed with cold saturated NaHCO₃, followed by washing to pH 6-7 with saturated NaCl. The extract was dried over MgSO₄ and concentrated in vacuo below 30 °C. The residue was purified by silica gel column chromatography with CHCl₃/ $CH_3OH(10/1)$. The main spot was collected, concentrated in vacuo below 30 °C, and dried in vacuo at room temperature. The residue was reduced for 10 h at room temperature on 10% Pd-C (50 mg) with H_2 (2 atm) in CH_2Cl_2 (15 mL). The reaction mixture was filtered off and washed with AcOEt, and then the filtrate was concentrated below 30 °C. The residue was purified by PTLC with CHCl₃/MeOH (10/1). The eluate with CHCl₃/ MeOH (10/1) was concentrated below 30 °C. To the residue in AcOEt (2 mL) was added 4 N HCl-AcOEt (0.3 mL). The reaction mixture was concentrated in vacuo below 30 °C. Recrystallization from Et₂O gave compounds 14a-g, respectively.

4'-Demethyl-4β-[2-oxo-2-[(2-morpholinoethyl)amino]ethyl]-4-desoxypodophyllotoxin hydrochloride (14a): yield 84.3%; ¹H NMR (DMSO-d₆) δ 10.62–10.69 (1H, b, N⁺H), 8.19–8.29 (2H, b, 4'-OH, CONH), 6.87 (1H, s, 5-H), 6.44 (1H, s, 8-H), 6.22 (2H, s, 2',6'-H), 5.97 (1H, s, OCH₂O), 5.96 (1H, s, OCH₂O), 4.44 (1H, d, J = 5.6 Hz, 1-H), 4.22 (1H, t, J = 8.2 Hz, 11α-H), 3.94 (1H, m, 11β-H), 3.50–3.90 (4H, m, NCH₂CH₂O in morpholine ring), 3.62 (6H, s, 3',5'-OCH₃), 3.43 (2H, m, NCH_βCH₂O in morpholine ring), 3.14 (5H, m, 4-H, CONHCH₂CH₂O, NCH_αCH₂O in morpholine ring), 3.05 (1H, m, 2-H), 2.92 (1H, m, 3-H), 2.72 (1H, m, CH₂CONH), 2.38–2.51 (2H, m, CONHCH₂-CH₂N), 2.33 (1H, m, CH₂CONH). Anal. (C₂₉H₃₄N₂O₉·HCl· H₂O) C, H, N.

4'-Demethyl-4 β -[2-oxo-2-(4-piperidinopiperidin-1yl)ethyl]-4-desoxypodophyllotoxin hydrochloride (14b): yield 76.1%; ¹H NMR (DMSO-d₆) δ 8.24 (1H, s, 4'-OH), 6.85–6.83 (1H, b, 5-H), 6.45 (1H, s, 8-H), 6.22 (2H, s, 2',6'-H), 5.96 (1H, s, OCH₂O), 5.94 (1H, s, OCH₂O), 4.58 (1H, d, J = 4.95 Hz, 1-H), 4.10 (1H, m, 11 α -H), 4.00 (1H, m, 11 β -H), 3.63 (6H, s, 3',5'-OCH₃), 3.55–3.80 (2H, m, CHNCH $_{\beta}$ CH₂ in piperidinopiperidine ring), 3.33–3.55 (3H, m, NCH_{\eta}CH₂CHN in piperidinopiperidine ring), 3.10– 3.30 (1H, m, 4-H), 2.80–3.10 (6H, m, 2,3-H, NCH_{\alpha}CH₂-CHN in piperidinopiperidine ring, CHNCH_{\alpha}CH₂ in piperidinopiperidine ring), 2.40–2.70 (2H, m, CH₂CONH), 1.92–2.15 (2H, m, NCH₂CH_{\beta}CHN in piperidinopiperidine ring), 1.80–2.00 (4H, m, NCH₂CH_{\alpha}CHN in piperidinopiperidine ring), 1.60–1.80 (3H, m, CHNCH₂CH_{\alpha}CHN in piperidinopiperidine ring), 1.60–1.80 (3H, m, CHNCH₂CH_{\alpha}CH_{\beta} in piperidinopiperidine ring), 1.30–1.60 (1H, m, CHNCH₂CH_{\alpha}CH_{\alpha} in piperidiin piperidinopiperidine ring). Proton signals of N⁺H were not clear. Anal. (C₃₃H₄₀N₂O₈·HCl·H₂O) C, H, N.

4'-Demethyl-4β-[2-oxo-2-[N-[2-(N,N-dimethylamino)ethyl]-N-methylamino]ethyl]-4-desoxypodophyllotoxin hydrochloride (14c): yield 78.4%; ¹H NMR (DMSO-d₆) δ 10.15 (1H, b, N⁺H), 8.25 (1H, s, 4'-OH), 6.96 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.23 (2H, s, 2',6'-H), 5.98 (1H, d, J = 1.0 Hz, OCH₂O), 5.95 (1H, d, J = 1.0 Hz, OCH₂O), 4.42 (1H, d, J = 4.9 Hz, 1-H), 4.15 (1H, t, J = 7.9 Hz, 11α-H), 3.88 (1H, m, 11β-H), 3.62 (6H, s, 3',5'-OCH₃), 3.00-3.53 (4H, m, 2,4-H, CONCH₂CH₂N), 2.59-3.00 (3H, m, 3-H, CONCH₂CH₂N), 2.93 (3H, s, CON-(CH₃)CH₂), 2.85 (6H, s, N(CH₃)₂), 2.40-2.60 (2H, m, CH₂CON). Anal. (C₂₈H₃₄N₂O₈·HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-oxo-2-[[2-(1-piperidino)ethyl]amino]ethyl]-4-desoxypodophyllotoxin hydrochloride (14d): yield 88.3%; ¹H NMR (DMSO- d_6) δ 10.02 (1H, b, N⁺H), 8.24 (1H, s, 4'-OH), 8.20–8.30 (1H, b, CONHCH₂), 6.86 (1H, s, 5-H), 6.44 (1H, s, 8-H), 6.21 (2H, s, 2',6'-H), 5.97 (1H, s, OCH₂O), 5.95 (1H, s, OCH₂O), 4.43 (1H, d, J = 5.6 Hz, 1-H), 4.22 (1H, t, J = 7.9 Hz, 11 α -H), 3.93 (1H, m, 11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 3.40–3.50 (4H, m, CONHCH₂CH₂N, NCH₆CH₂ in piperidine ring), 3.07–3.14 (2H, m, 2,4-H), 2.80–3.00 (5H, m, 3-H, CONHCH₂CH₂, NCH_aCH₂ in piperidine ring), 2.75 (1H, d, J = 6.6 Hz, CH₂CON), 2.37 (1H, d, J = 6.6 Hz, CH₂CON), 1.67–1.80 (5H, m, NCH₂CH₂CH_{α} in piperidine ring). Anal. (C₃₀H₃₆N₂O₈· HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-oxo-2-(4-methylpiperazin-1-yl)ethyl]-4-desoxypodophyllotoxin hydrochloride (14e): yield 78.6%; ¹H NMR (DMSO- d_6) δ 8.32 (1H, b, 4'-OH), 6.82 (1H, s, 5-H), 6.45 (1H, s, 8-H), 6.23 (2H, s, 2',6'-H), 5.97 (1H, s, OCH₂O), 5.95 (1H, s, OCH₂O), 4.46 (1H, d, J = 5.3 Hz, 1-H), 4.21 (1H, t, J = 8.6 Hz, 11 α -H), 3.92 (1H, m, 11 β -H), 3.64 (6H, s, 3',5'-OCH₃), 2.80–3.40 (11H, m, 2,3,4-H, NCH₂CH₂N in piperazine ring), 2.75 (3H, s, NCH₃), 2.50–2.60 (2H, m, CH₂CON). Proton signals of N⁺H were not clear. Anal. (C₂₈H₃₂N₂O₈·HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-oxo-2-[[2-(*N*-methylpyrrol-2-yl)ethyl]amino]ethyl]-4-desoxypodophyllotoxin hydrochloride (14f): yield 50.5%; ¹H NMR (DMSO- d_6) δ 7.95 (1H, b, 4'-OH), 7.90–8.00 (1H, b, CH₂CONH), 6.82 (1H, s, 5-H), 6.59 (1H, m, pyrrole ring), 6.43 (1H, s, 8-H), 6.21 (2H, s, 2', 6'-H), 5.96 (1H, s, OCH₂O), 5.94 (1H, s, OCH₂O), 5.86 (1H, dd, J = 3.3, 2.9 Hz, pyrrole), 5.78 (1H, m, pyrrole), 4.43 (1H, d, J = 5.6 Hz, 1-H), 4.20 (1H, m, 11 α -H), 3.92 (1H, m, 11 β -H), 3.62 (6H, s, 3',5'-OCH₃), 3.60 (1H, m, 4-H), 3.51 (3H, s, NCH₃), 3.26 (2H, t, J = 6.9 Hz, CONHCH₂), 3.07 (1H, dd, J = 9.9, 5.2 Hz, 2-H), 2.80–3.00 (1H, m, 3-H), 2.62 (2H, t, J = 8.5 Hz, CONHCH₂CH₂), 2.20–2.60 (2H, m, CH₂CON). Proton signals of N⁺H were not clear. Anal. (C₃₀H₃₂N₂O₈·HCl·H₂O) C, H, N.

4'-Demethyl-4 β -[2-oxo-2-[(4-pyridinylmethyl)amino]ethyl]-4-desoxypodophyllotoxin hydrochloride (14g): yield 34.0%; ¹H NMR (DMSO- d_6) δ 8.78 (2H, d,

 $J = 6.3 \text{ Hz}, \text{ pyridine ring}), 8.65 (1\text{H}, \text{s}, 4'-\text{OH}), 8.60-8.70 (1\text{H}, \text{m}, \text{CH}_2\text{CONH}), 7.77 (2\text{H}, \text{d}, J = 6.2 \text{ Hz}, \text{ pyridine ring}), 6.84 (1\text{H}, \text{s}, 5-\text{H}), 6.46 (1\text{H}, \text{s}, 8-\text{H}), 6.22 (2\text{H}, \text{s}, 2', 6'-\text{H}), 5.97 (2\text{H}, \text{s}, \text{OCH}_2\text{O}), 4.52 (1\text{H}, \text{d}, J = 5.6 \text{ Hz}, 1-\text{H}), 4.45 (2\text{H}, \text{d}, J = 5.3 \text{ Hz}, \text{CONHCH}_2), 4.20 (1\text{H}, \text{m}, 11\alpha-\text{H}), 3.95 (1\text{H}, \text{m}, 11\beta-\text{H}), 3.62 (6\text{H}, \text{s}, 3', 5'-\text{OCH}_3), 3.60 (1\text{H}, \text{m}, 4-\text{H}), 3.16 (1\text{H}, \text{dd}, J = 14.3, 4.6 \text{ Hz}, 2-\text{H}), 2.80-3.00 (1\text{H}, \text{m}, 3-\text{H}), 2.70-2.80 (1\text{H}, \text{m}, \text{CH}_2\text{CON}), 2.40-2.60 (1\text{H}, \text{m}, \text{CH}_2\text{CON}). Proton signals of N⁺H were not clear. Anal. (C₂₉H₂₈N₂O_8\cdot\text{HCl}\cdot\text{H}_2\text{O}) C, H, N.$

Biological Screening. Cell Lines and Cytotechnology. Cells were continuously cultured in RPMI 1640 medium (P388) or minimal essential medium (human cell lines) supplemented with 10% FCS. Cells were plated in 24-well flat-bottomed plates (Corning, type 25820) and cultured for 24 h in a CO₂ incubator. Thereafter, test compounds were added and cultured for 96 or 4 h. Cell numbers were counted using a hemocytometer. The IC₅₀ value was defined as the drug concentration needed to produce a 50% reduction in cell number relative to the control.

Preparation of Crude Nuclear Extracts. Crude nuclear extracts were prepared by a modification of a published procedure.¹⁸ Exponentially growing cells were collected by centrifugation and washed in ice-cold NB (NB consists of 2 mM K₂HPO₄, 5 mM MgCl₂, 150 mM NaCl, 1 mM EGTA, and 0.1 mM dithiothreitol, pH 6.5). The washed cells were resuspended in NB, and 9 mM NB supplemented with 0.35% Triton X-100 and 1 mM phenylmethyl sulfonyl fluoride was added slowly down the side of the tube. The cell suspension was mixed by rotation for 5 min at 4 °C and then centrifuged at 1000g for 10 min, and then the nuclear pellet was washed in Triton-free NB. The nuclear protein was extracted from the nuclei for 30 min at 4 °C with ice-cold NB containing 0.35 M NaCl. DNA and nuclear debris were pelleted by centrifugation at 17000g for 10 min, and the supernatant was decanted. The protein concentration in the supernatant was determined by the method of Bradford.¹⁹

Topo II Catalytic Activity Assay. Topo II catalytic activity was measured using the decatenation assay.²⁰ The standard reaction mixture was 50 mM Tris-HCl (pH 7.5). 8.5 mM KCl, 10 mM MgCl₂, 0.5 mM dithiothreitol, 0.5 mM EDTA, bovine serum albumin (0.03 mg/mL), and 1 mM ATP. Kinetoplast DNA was decatenated by incubating 4 μ L of nuclear extract (0.05 μ g of protein) with 1 μg of kinetoplast DNA in the standard reaction mixture for 30 min at 30 °C. Reactions were terminated with $5 \,\mu \text{L}$ of 5% SDS containing 0.13% bromophenol blue and 50% glycerol. Samples were then electrophored in 1%agarose with 40 mM Tris, 2 mM EDTA, 19 mM acetic acid, pH 8.1 at 50 V for 1 h. Gels were stained with ethidium bromide $(1.0 \,\mu\text{g/mL})$ for 30 min and destained for 1 h in H₂O. DNA bands were visualized by UV transillumination and photographed using Polaroid type 665 positive/negative film. Inhibitory activity was calculated from densitometrically scanning gel negatives. The IC₅₀ value was defined as the drug concentration needed to produce a 50% reduction in the amount of minicircle DNA relative to the control.

Tubulin Preparation and Antimicrotubular Activity Test. Bovine brain tubulin was prepared as described previously.²¹ Purification was proceeded in a buffer composed of 100 mg of Mes (2-(*N*-morpholino)ethanesulfonic acid), 1 mM ethylene glycol-bis-*N*,*N*tetraacetic acid (EGTA), 1 mM MgSO₄, 5 mM NaH₂PO₄, and 0.02% NaN₃, pH 6.75 (MEM buffer). After one cycle of polymerization-depolymerization, the pellets were stored at -80 °C. Tubulin was polymerized by incubating 50 μ L of tubulin (200 μ g protein) with 250 μ L of MEM buffer containing 1 mM GTP for 15 min at 37 °C. For assembly measurements, turbidity was monitored at 350 nm with a temperature-controlled Hitachi U3210 spectrophotometer. The IC_{50} value was defined as the drug concentration needed to produce a 50% reduction of polymerization relative to the control.

Acknowledgment. We are grateful to Dr. T. Asao for helpful discussions and to T. Yamazaki and Dr. K. Kobayashi for mass spectra recording.

Supplementary Material Available: Characterization data (¹H NMR spectral, FAB-MS spectral, IR spectral, melting points, optical rotation, and microanalytical) for compounds 4-10, 12a-12x, and 14a-14g (12 pages). Ordering information is given on any current masthead page.

References

- Terada, T.; Fujimoto, K.; Nomura, M.; Yamashita, J.; Kobunai, T.; Takeda, S.; Wierzba, K.; Yamada, Y.; Minami, Y.; Yoshida, K.; Yamaguchi, H. Antitumor Agents II: Regio- and Stereospecific Syntheses of 1-β-Alkyl-1-Desoxypodophyllotoxin Derivatives and Bublicity Activity for the Provent Provide International Activity of the Provention of the Proventin of the Provention of the Provention of the Provention of th
- Biological Activity. Chem. Pharm. Bull., in press. King, L. S.; Sullivan, M. S. The Similarty of the Effect of (2)
- Rung, L. Schwart, M. S. The Sinhard of the Treatment of Podophyllin and Colchicine and Their Use in the Treatment of Condylomata Acuninata. Science 1946, 104, 244-245.
 (a) Gensler, W. J.; Murthy, C. D.; Trammell, M. H. Nonenolizable Podophyllotoxin Derivatives. J. Med. Chem. 1977, 20, 635-644. (3) (b) Loike, J. D.; Brewer, C. F.; Sternlicht, H.; Gensler, W. J.; Horwitz, S. B. Structure-Activity Study of the Inhibition of Microtubule Assembly in Vitro by Podophyllotoxin and Its Congeners. Cancer Res. 1978, 38, 2688–2693. (c) Stahelin, H.; Wartburg, A. V. From Podophyllotoxin Glucoside to Etoposide. Prog. Drug. Res. 1989, 33, 169-266.
- Stahelin, H.; Cerletti, A. Experimental Results with Podophyllum-(4) Cylostatic SP-I and SP-G. Schweiz. Med. Wschr. 1964, 94, 1490-1502
- (a) Falkson, G.; Sandison, A. G.; Vanzyl, J. Podophyllin Derivatives SPG 827 and SPI 77 in the Treatment of Advanced Cancer. S. Afr. J. Radiol. 1964, 2, 1–7. (b) Vaitkevicius, V. K.; Reed, M. I. Clinical Studies with Podophyllum Compounds SPI-77 (NSC-72274) and SPG-827 (NSC-42076). Cancer Chemother. Rep. 1966, 50, 565-571.
- (a) Cohen, M. H.; Broder, L. E. Fossieck, B. E.; Ihde, D. C.; Minna, (6) J. D. Phase II Clinical Trial of Weekly Administration of VP-16-213 in Small Cell Bronchogenic Carcinoma. Cancer Treat. Rep. 1977, 61, 489-490. (b) Issell, B. F. The Podophyllotoxin Derivatives VP16-213 and VM-26. Cancer Chemother Pharmacol. 1982, 7, 73-80. (c) Issell, B. F.; Muggia, F. M.; Carter, S. K. Etoposide [VP-16] Current Status and New Developments; Academic Press: Orlando, 1984; pp 1-353.
- (a) Grieder, A.; Maurer, R.; Stahelin, H. Comparative Study of Early Effects of Epipodophyllotoxin Derivatives and Other Cy-(7)Early Enters on Mastocytoma Cultures. Cancer Res. 1977, 37, 2998–3005. (b) Loike, J. D.; Horwitz, S. B. Effects of VP16-213 on the second seco the Intracellular Degradation of DNA in HeLa Cells. Biochemistry 1976, 15, 5443-5448. (c) Loike, J. D.; Horwitz, S. B. Effects of 1976, 10, 5435-5445. (c) Louke J. D.; Forwitz, S. B. Effects of Podophyllotoxin and VP-16-213 on Microtubule Assembly in Vitro and Nucleoside Transport in HeLa Cells. *Biochemistry* 1976, 15, 5435-5443. (d) Long, B. H.; Minocha, A. Inhibition of Topoi-somerase II by VP-16-213 (etoposide) VM-26 (teniposide), and Structural Congeners as an Explanation for in Vivo DNA Breakage and Cytotoxicity. Proc. Am. Assoc. Cancer Res. 1983, 24, 321 (Abstr). (e) Glisson, B. S.; Smallwood, S. E.; Ross, W. E. Characterization of VP-16-induced DNA Damage in Isolated from L1210 Cells. Biochim. Biophys. Acta 1984, 783, 74-79. (f) Minocha, A.; Long, B. H. Biochim. Biophys. Res. Commun. 1984, 122, 165-170.
- (a) Saitoh, H.; Yoshikawa, H.; Nishimura, Y.; Kondo, S.; Takeuchi, (8) T.; Umezawa, H. Studies on Lignan Lactone Antitumor Agents. I. Synthesis of Aminoglycosidic Lignan Variants Related to Podo-phyllotoxin. Chem. Pharm. Bull. 1986, 34, 3733–3740. (b) Saitoh, H.; Yoshikawa, H.; Nishimura, Y.; Kondo, S.; Takeuchi, T.; Umezawa, H. Studies on Lignan Lactone Antitumor Agents. II. Synthesis of N-Alkylamino- and 2,6-Dideoxy-2-aminoglycosidic ignan Variants Related to Podophyllotoxin. Chem. Pharm. Bull. 1986, 34, 3741-3746. (c) Saitoh, H.; Nishimura, Y.; Kondo, S.; Umezawa, H. Syntheses of All Four Possible Diastereomers of Etoposide and Its Aminoglycosidic Analogues via Optical Resolution

of (±)-Podophyllotoxin by Glycosidation with D- and L-Sugars. Chem. Lett. 1987, 799-802. (d) Showalter, H. D.; Winter, R. H.; Sercel, A. D.; Michel, A. Facile Synthesis of Thioglucose Analogs of the Anticancer Agent Etoposide. Tetrahedron Lett. 1991, 25, 2849-2852

- Terada, T.; Fujimoto, K.; Nomura, M.; Yamashita, J.; Kobunai, T.; Takeda, S.; Wierzba, K.; Yamada, Y.; Yamaguchi, H. Antitumor Agents. I. DNA Topoisomerase II Inhibitory Activity and the Structural Relationship of Podophyllotoxin Derivatives as Antitumor Agents. Chem. Pharm. Bull. 1992, 40, 2720-2727.
- (10) Slevin, M. L.; Clark, P. I.; Joel, S. P.; Malik, S.; Osborne, R. J.; Gregory, W. M.; Lowe, D. G.; Reznek, R. H.; Wrigley, P. F. A Randomized Trial to Evaluate the Effect of Schedule on the Activity of Etoposide in Small-Cell Lung Cancer. J. Clin. Oncol. 1989, 7, 1333-1340.
- (11) (a) Chapman, R.; Itri, L.; Gralla, R.; Kelsen, D.; Capser, E.; Golby, R. Phase II Trial of VP16-213 in Non-small Cell Lung Cancer (NSCLC). Cancer Chemother. Pharmacol. 1982, 7, 205-207. (b) Eagan, R.; Carr, D.; Frytak, S. Vp16-213 versus Polychemotherapy in Patients with Advanced Lung Cancer. Cancer Treat. Rep. 1976, 60, 949–951. (c) Falkson, G.; Dyk, J.; Med, M.; Eden, E. B.; Merwe, A. M.; Bergh, J. A.; Falkson, H. C. A Clinical Trial of the Oral Form of 4'-Demethylepipodophyllotoxin-β-D-ethylidene Glucoside (NSC 141540) VP16-213. Cancer 1975, 35, 1141-1144. (d) Nissen, N. I.; Pajak, T.F.; Leone, L.A.; Bloomfield, C.D.; Kennedy, B.J.; Ellison, R. R.; Silver, R. T.; Weiss, R. B.; Cuttner, J.; Falkson, G.; Kung, F.; Bergevin, P. R.; Holland, J. F. Clinical Trial of VP16-213 (NSC 141540) I.V. Twice Weekly in Advanced Neoplastic Disease. Cancer 1980, 45, 232-235
- (12) Straus, M. J.; Moran, R. E. Cell Cycle Kinetics of Human Lung Cancer. Semin. Resp. Med. 1982, 3, 194-199.
- (13) Kasahara, K.; Fujiwara, Y.; Sugimoto, Y.; Nishio, K.; Tamura, T.; Matsuda, T.; Saijo, N. Determination of Response to the DNA Topoisomerase II Inhibitors Doxorubicin and Etoposide in Human Lung Cancer Cell Lines. J. Natl. Cancer Inst. 1992, 84, 2, 113-118.
- (14) (a) Colombo, T.; Broggini, M.; Torti, L.; Erba, E.; D'Incalci, M. Pharmacokinetics of VP16-213 in Lewis Lung Carcinoma Bearing Mice. Cancer Chemother. Pharmacol. 1982, 7, 127-131. (b) Evans, W. E.; Sinkule, J. A.; Crom, W. R.; Dow, L.; Look, A. T.; Rivera, G. Pharmacokinetics of Teniposide (VM-26) and Etoposide (VP16-213) in Children with Cancer. Cancer Chemother. Pharmacol. 1982, 7, 147-150. (c) Broggini, M.; Colombo, T.; D'Incalci, M. Activity and Pharmocokinetics of Teniposide in Lewis Lung Carcinoma-Bearing Mice. Cancer Treat. Rep. 1983, 67, 555-559. (d) Arbuck, S. G.; Douglass, H. O.; Crom, W. R.; Goodwin, P.; Silk, Y. Etoposide Pharmocokinetics in Patients with Normal and Abnormal Organ Function. J. Clin. Oncol. 1986, 4, 1690-1695. (e) Hoogenhuijze, J. V.; Lankelma, J.; Stam, J.; Pinedo, H. M. Unchanged Pharmocokinetics of VP-16-213 (etoposide, NSC141540) during Concominant Administration of Doxorubicin and Cyclophosphamide. Eur. J. Cancer Clin. Oncol. 1987, 23, 807-812. (f) Gouyette, A.; Deniel, A.; Pico, J.-L.; Baume, D.; Ostronoff, M.; Bail, L. N.; Hayat, M. Clinical Pharmacology of High-dose Etoposide Associated with Cisplatin. Pharmacokinetic and Metabolic Studies. Eur. J. Cancer Clin. Oncol. 1987, 23, 1627–1632
- (15) VP-16 (10 mg/kg) and selected compounds (10 mg/kg) were administered iv to S-180 bearing mice (sc). The AUC0-4 (mg/mL per h) value of all selected compounds in lung tissue was higher than that of VP-16. For example, the AUC0-4 (mg/mL per h) value of 12s was 81.8 (mg/mL per h), compared with 4.7 (mg/mL per h) of VP-16. These results will be reported elsewhere (unpublished).
- (16) (a) Jardine, I. Podophyllotoxin. In Anticancer Agents Based on Natural Product Models; Cassady, J., Douros, J., Es.; Academic Press, Inc.: Orlando, 1980; pp 319-351. (b) Long, B. H.; Musial, S. T.; Brattain, M. G. Comparison of Cytotoxicity and DNA Breakage Activity of Congeners of Podophyllotoxin Including VP16-213 and VM-26: A Quantitative Structure-Activity Relationship. Biochemistry 1984, 23, 1183-1188. (17) Kuhn, M.; Wartburg, A. V. New Glycosidation Process. II.
- Glycosides of 4'-Demethylepipodophyllotoxin. Helv. Chim. Acta 1969, 52, 948-955.
- (18) Deffie, A. M.; Batra, J. K.; Goldenberg, G. J. Direct Correlation between DNA Topoisomerase II Activity and Cytotoxicity in Adriamycin-sensitive and -resistant P388 Leukemia Cell Lines. Cancer Res. 1989, 49, 58-62
- (19) Bradford, M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248-254.
- (20) (a) Duguet, M.; Lavenot, C.; Harper, F.; Mirambeau, G.; Derecondo, A. M. DNA Topoisomerase from Rat Liver: Physiological Variations. Nucleic Acids Res. 1983, 11, 1059–1075. (b) Marini, J. C.; Miller, K. G.; Englund, P. T. Decatenation of Kinetoplast DNA by Topoisomerases. J. Biol. Chem. 1980, 255, 4976-4979.
- Vogel, D. G.; Margolis, R. L.; Mottet, N. K. The Effects of Methyl (21)Mercury Binding to Microtubules. Toxicol. Appl. Pharmacol. 1985, 80, 473-486.